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(cont)

determine whether or not the Type II wave was responsible for the anomalies.
Calculations indicate that the contributions from the Type II wave are
negligible and thus not the cause of anomalies. Much of the anomalous behavior
appeared to arise simply as a result of an incorrect compressional wave attenuation
in the geoacoustic model.
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ABSTRACT

The Biot theory of propagation in a porous medium provides a mathematical

framework for studying acoustic interaction with the seafloor. The theory considers the

two-phase porous nature of marine sediments in contrast to the classical models of wave

propagation in the seafloor that consider marine sediments as an extended single-phase

fluid or solid. A boundary value problem is set up and solved for a line source in a fluid

medium above a poro-viscoelastic halfspace. Expressions for the reflected and transmitted

field are given in integral form and asymptotic expansions in the high-frequency, far-field

limit. A set of simultaneous equations is solved to give plane wave reflection and

transmission (Type I , Type II and shear wave) coefficients. These equations also yield the

Scholte, pseudo-Scholte, and pseudo-Rayleigh wave phase velocities and attenuations.

The plane wave coefficients and the surface wave velocities and attenuations are compared

with commensurate quantities from the single-phase theories.

A number of recent experiments of high frequency transmission through a water-

sand interface have indicated anomalously high transmitted energy at angles near the critical

angle. The Type II wave (predicted by Biot theory but not the single-phase theories) was

suspected as a possible reason for the anomalies. Data from one of the experiments are

examined using Biot theory to determine whether or not the Type II wave was responsible

for the anomalies. Calculations indicate that the contributions from the Type II wave are

negligible and thus not the cause of the anomalies. Much of the anomalous behavior

appeared to arise simply as a result of an incorrect compressional wave attenuation in the

geoacoustic model.
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Chapter 1

INTRODUCTION

An important problem in the field of underwater acoustics is the interaction of a

sound field with the seafloor. The seafloor is an acoustically complex medium exhibiting

properties that can be highly variable in both vertical and lateral extent. On a microscopic

scale the seafloor is no less complicated; marine sediments manifest themselves as two- and

sometimes three-phase materials with solid grains of variable dimension, shape, and

composition randomly oriented and connected in space, the interstices being filled by

seawater and dissolved gases.

1.1 Background

The modeling of wave propagation through the physically complex medium of the

seafloor has progressed from treating the sediments as a lossy fluid, to a viscoelastic solid,

to a poro-viscoelastic solid. The great bulk of modeling efforts of acoustic interaction with

the seafloor in the ocean acoustics community have considered the seafloor sediments to be

modelable as a fluid [e.g., Ingenito (1973), Ellis and Chapman (1980), Rubano (1980),

Dicus and Anderson (1982), and Brocher (1983)]. The fluid model has been sufficient in

fact to successfully predict various measures of a propagating acoustic field: most

commonly transmission loss. Some of the experimental results [e.g., Ingenito and Wolf

(1976), McDaniel and Beebe (1980), Chapman and Ellis (1984), Beebe and Holland

(1986), Hughes et al. (1990)], however, indicated that the effect of the sediment rigidity

could be significant for various environments. Modeling efforts [Fryer (1978), Vidmar

(1980), Holland (1985)] that considered the sediments as viscoelastic attempted to determine

the bounds of validity for the fluid approximation as a function of frequency and seafloor

environment.
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In the meantime a substantial effort was directed toward an even more rigorous

accounting of the physics of propagation in marine sediments, using Biot theory (1956a,

1956b, 1962), which considered marine sediments as a poro-elastic solid. The theory

predicts, in contrast to both the fluid model and the viscoelastic model (which will be

referred to as single-phase models) a non-linear frequency dependence of wave attenuations

and a compressional wave of the second kind (which will hereafter be referred to as the

Type II wave) in addition to the classical compressional (Type I) and shear wave of

geophysics.

The foundations of the Biot theory were laid by Rayleigh [Strutt (1883)] who

considered propagation in a porous medium whose solid frame was rigid and whose

interstices were circular cylinders. Later, Zwikker and Kosten (1949) developed the rigid

frame theory further and began initial developments of a flexible frame theory. It was Biot,

however, who provided the first comprehensive theory of wave propagation in fluid

saturated porous media that accounted for both the losses due to the relative motion between

the interstitial pore fluid and the solid frame and accounted for displacements in the solid

frame.

In an exhaustive series of papers, Deresewicz and co-authors (1962-1964) used

Biot theory to examine a number of seafloor interaction problems. Later, Stoll (1974)

introduced the notion of complex frame moduli to account for viscoelastic effects and in a

series of papers [Stoll (1977), Stoll (1979), Stoll (1980), Stoll and Kan (1981)] was

largely responsible for bringing Biot theory to the attention of the underwater acoustics

community. Thus, the poro-viscoelastic model (sometimes termed the Biot-Stoll model)

considers loss mechanisms due to the relative motion between the fluid and frame as well

as (approximately) constant Q effects such as the squeeze-film phenomena, frictional losses

at grain-to-grain contacts, and relaxation phenomena associated with electrochemical

effects. Yamamoto (1983a, 1983b) was also active in applying the theory to a number of
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problems and generalized the form of the visco-dynamic operator to include a distribution

of grain sizes [Yamamoto and Turgut (1988)].

Laboratory experiments have to date confirmed many aspects of the Biot theory

including the frequency depenO.",-ce of the Type I compressional velocity and attenuation

[e.g., Hovem and Ingram (1979), Addison (1984), Winkler (1985)], the dependence of the

Type I compressional wave velocity and attenuation on the properties of the interstitial pore

fluid [e.g., Domenico (1977) and Costley (1986)], the frequency dependence of the shear

wave attenuation [Brunson and Johnson (1980)] and the existence of the Type H wave

[Paterson (1956) and Plona (1980)]. Actually, the existence of the Type H wave was well

known in aeroacoustics and its properties had been measured in porous architectural

materials such as foams and fibrous tiles. At-sea experiments [e.g., Ingenito (1973)] also

have indicated that the frequency dependence of the Type I wave compressional wave

attenuation is not always linear with frequency and Biot theory has been successfully

employed in explaining such non-linearities [Beebe (198 1)]. An excellent recent summary

of the state of understanding of the frequency dependence of compressional wave

attenuation in marine sediments and the evidence for a non-linear frequency dependence is

given by Kibblewhite (1989).

1.2 Objective and Approach

The motivation for this work was to understand how the porous, two-phase nature

of marine sediments influences reflection from and transmission through the seafloor since

the majority of current models of seafloor interaction consider marine sediments to be a

single-phase fluid or a single-phase solid. In order to focus on the effects of the two-phase

poro-viscoelastic medium, a great many complexities in nature are ignored here, including

interface roughness and slopes; velocity, attenuation, and density gradients; and

macroscopic inhomogeneities.
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Th.: approach taken is to set up and solve a boundary value problem of a fluid

(seawater) overlying a poro-viscoelastic halfspace (sediment) where the source is in the

upper medium. For simplicity the source is chosen to be a line source such that the

problem can be solved in two dimensions. The linearized wave equation is employed in

the upper halfspace and the equations of motion for a poro-viscoelastic medium derived by

Biot are employed for the sediment. The form of the Biot theory in this work largely follows

Stoll (1974). The effects arising from the two-phase nature of the sediments in the

reflection/transmission problem are isolated by a comparison with commensurate results

from the single-phase models. The comparison of reflection and transmission between the

single phase models and the poro-viscoelastic model is performed for three sediment types:

a silty clay, a carbonate sand, and a sandstone. These sediment types were chosen as

representative of common sediment types and because they represent distinct relationships

between the ratio of their velocities to that of the overlying bottom water. For the silty clay,

the Type I and shear wave velocity are both less than that of the upper halfspace; for the

carbonate sand, the Type I wave velocity is greater and the shear velocity less than that of

the upper halfspace; and for the sandstone, the Type I wave and shear velocity are both

greater than that of the upper halfspace. The Type H velocity is less than that of the upper

halfspace for all sediment types.

In Chapter 2, the time harmonic equations of motion are written for both media and

Fourier transformed into wavenumber space. The dispersion relations for the poro-

viscoelastic medium are obtained and examples of the frequency dependent velocities and

attenuations for the three sediment types are shown. The boundary conditions are then

applied, resulting in a set of simultaneous equations that can be solved for the plane wave

reflection and transmission coefficients. In Chapter 3, the reflection coefficients from a

poro-viscoelastic halfspace, a viscoelastic halfspace, and a fluid halfspace are compared in

frequency and angle space for the three kinds of sediments. Differences in the reflectivity

between models is noted and observations are made regarding the effect of using one model
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or another in acoustic modeling. Several approximate models are also examined. The

secular equation is derived and surface wave speeds and attenuations are obtained and

compared with predictions from the single-phase viscoelastic solid sediment model. In

Chapter 4, the inverse transform is applied using a combination of techniques to obtain the

contribution from each wave type (i.e., direct path, geometrical reflected/transmitted ray,

head wave, surface wave) and the results are compared with the "exact" solution (obtained

by numerical integration) and with the solution obtained by a Fast Fourier Transform. The

decomposition of the field into discrete wave types allows identififation of dominant path

contributions that arise in specific source/receiver geometries. In Chapter 5, recent

anomalous experimental data of acoustic transmission through a water-sand interface are

examined using Biot theory to determine whether the anomalies are attributable to effects

predicted by Biot theory. A summary and conclusions of this work are given in Chapter 6.
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Chapter 2

THEORY I - FORWARD TRANSFORM

In this chapter the equations of motion are given for each medium and transformed

to the frequency domain, the boundary conditions are stated and a set of simultaneous

equations are written to obtain the reflection and transmission coefficients.

2.1 The Fluid

The linearized equation of motion for an ideal fluid with a line source perpendicular

to the x-z plane can be written:

a2 2
V2P2 = P o 8(x) 8(z-h) L "t) (2.1)

where:

p is the dynamic acoustic fluctuation pressure
Vo  is the acoustic wave speed
P0  is the static density

f(t) is the forcing function

and the (line) source is located at x=O, z=h. Letting f(t) be a unit time harmonic function,

f(t) = e iot, equation (2.1) becomes

V2p + kojp = -O)2po 8(x) 8(z-h) ; ko-Vo= (2.2)

where the harmonic time dependence has been suppressed. Defining a Fourier Transform

on the x variable:

D(k.,z)= f p(x,z)ezkxxdx

P(XZ)1 fo(kx,z)e_&cxxdk xp(x,z) =(
-~ (2.3)
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then

c) + 0 (k0
2 -kx 2 )-.o 2 po 5(z-h) (2.4)

which admits a homogeneous solution of the form

-I2_ 2)1/ i.2_2 1/2Z
P~ )=Ae 01X + Ble 0X(2.5)

The particular solution is obtained by a Fourier Transform on the z variable;

P(kx, kz)(ko - kx kz ( o (2.6)

and

A (kX, Z) =- - J0p 00~ (2.7)zz-
.P 2n f kz2 + kX2 - k0

2  k(27

The integrand has simple poles at

kzO ±ko2 -kx2)1t2  (2.8)

Taking the case (z-h) < 0 first and closing the contour in the upper half plane

/ -kzoCR

-R +R k

Figure 2.1 Path of integration in the complex kz plane for (z-h) < 0
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we have from the Residue Theorem that

R - ikz(z- h) e -kz(z-h)
J k2 +k 2 k 2 dk + 2 2  2 dkz =2ires(k)

-R z + k CR z X 0 (2.9)

where
eik zh) e-i (k2-k2)1/ (z-h)

res( - kz = kz ko -2kkz- 21/

z j) -k O 0( - (2.10)

To make the integral on CR vanish as R-- -; we require that Im {kz} > 0 or,

Im((ko2 - kx2) 1/2l< 0; then

(x~ h=-{2p e-i(k2-_k2 ) /2(z-h)

(kx, z < ) ~o oe 0x2 ( 2k2 1/ 2
2 (ko - kX)1  (2.11)

For (z-h) > 0: we close the contour in the lower half plane

k zI

-R R

Figure 2.2 Path of integration in the complex kz plane for (z-h) > 0
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and from the Residue Theorem

(2.12)
R e-ikz(z-h) e-ik z(z-h) 2 +k5 k2 + k2 _ k 2 dk +J -R k2"+ k 2 k2. dkk =2 k 2 i res

-R kCk~k cik+ k ko-R z x 0o z x 0

2 2) 112

e (ko-kx)(z-h)res(+kzo) e(k0_ ) /

0 2(k 2 - k 2

(2.13)

Note that the minus sign on the RHS of Eq. (2.12) follows from Cauchy's law closing the

contour clockwise. To make the integral on CR vanish as R--O we require that Im{kz}< 0

or Im ((ko2 - kx2 )1/2)<0, then

(kx. > / 2 p e-i(k2-k2)l1/2 (z-h)

2 (k2-k) 1 /2  (2.14)

and for all z (combining Eq. (2.11) and Eq. (2.14))

.1L~ 2 -•2 _k2 ) I/2 -h
P3(x,z) = - 2 (ko-kx) 2.1)-

2 (k2- k2) / (2.15)
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The total solution is the sum of the homogeneous and the particular solution. The

radiation condition, however, requires that Im ((ko2 - k 2)1/'2 ) < 0 so that B1 = 0, and the

full solution is

•.2 _ 2 )1/2 -i(k 2-k 2 )1/ 2Iz-hI
S(kx,z) =Ae 0x

2 tk2  _ k2 )1/2-So "0x, (2.16)

Now let

l -L2(ko2 - kx2)l/21

where 9 can be thought of as a reflection factor for the amplitude of the velocity potential,

then

i o [ 2 PO -i(ko-k2 ) 1/2Z ik22)1/ zh

(kx,z) - +
0 X IN 1(2.17)

The boundary conditions will require an expression for the field in terms of the

displacement vector Uo where the subscript denotes the upper medium. From Eulers

equation

a2U2

-Vp = Po -2 (2.18)

Since we are assuming a time harmonic field (e i~t)

Vp = poC02 Uo (2.19)
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and transforming Euler's equation, we get

-aiikxP+a"z =poO) (°  (2.20)

where al, a3 are the x and z unit vectors respectively. Letting ( = (ko 2 - kx2) 1/2 ,

_kX~zO= alikx- [e-iaZ+e-ia z-h] +

POW 2a

a 2a, z t 
(2.21)

Noht e-iz -- ictz-hl ( h

Note that a 51;Iz-hI)

and

a -hi={+lforz>h
, [z- I for z < h

For the last term of Eq. (2.21) the minus sign is chosen because we want to use this

expression for the boundary conditions (where z = 0) so that

~h)=-I{alkx9te-zz+e-iaz-hj+a
3 a e-Lz(.22

(2.22)
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2.2 The Poro-viscoelastic Halfspace

2.2.1 Equation of Motion

In this section the equations of motion for a poro-viscoelastic medium are derived,

the dispersion relation is found and tle Fourier transformed displacement vectors for the

motion of the sediment frame and the relative motion between the frame and the interstitial

fluid are obtained.

The equations of motion are obtained by specifying both the constitutive equations

(relating the internal restoring forces of the medium to the corresponding deformations) and

the force balance equations which come from Newton's second law. For the two-phase

material under consideration each kind of conservation law is expressed by two equations;

one for the solid component and one for the fluid component.

For the constitutive equations, generalized Hooke's law for an isotropic porous

medium yields in dyadic notation

C = I { X(V.u) - C (V.w)} +gt (V u + u V) (2.23)

where r is the stress, I is the identity matrix, X and g are the Lame' constants, u is the

absolute displacement of the solid frame, w is the relative displacement of the two phases

w = 3 (u - U) (2.24)

U is the absolute displacement of 'be fluid, 13 is the material porosity, and C is an operator

that characterizes the elastic and inelastic response of the sediment frame (see Appendix A).

Without the term C(V.w), Eq. (2.23) reduces to the constitutive equation for an isotropic

elastic solid. The constitutive equation for the fluid is:

pf = M(V-w) - C(V.u) (2.25)
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where pf is the pressure in the interstitial fluid and M is an operator of the same form

described for C. Eq. (2.25 ) has the same form as the equation of continuity for an

isotropic fluid.

The force balance equations likewise resemble their isotropic counterparts,

V. = at2 [pTu - PfW] (2.26)

-Vp [pfu- pbw] (2.27)

where

PT = the total static density of the medium

pf = the density of the interstitial fluid

Pb = the complex density

The total static density of the medium can be obtained by a simple material average, i.e.

PT = PfD + Ps(l- P) (2.28)

where Ps is the density of the solid grains. The complex density was derived by Biot

(1962) as

Pb = c Pf -iwA F( ) 
(2.29)

The first term accounts for the fact that since the pore space is tortuous not all the fluid

moves in the direction of the applied pressure gradient. The parameter c is equal to one

where the pores are aligned in the direction of the pressure gradient and greater than one for

randomly ordered pore geometries characteristic of sediment interstices. The second term

accounts for viscous drag caused by fluid viscosity 11 scaled by the permeability X. The



14

function F(y) was derived originally by Zwikker and Kosten (1949) to account for the

transition between Poiseuille flow at low frequencies and Helmholtz flow at high

frequencies. The function is defined as:

1 yT(y)
F(y) = 1 1_2T(Y)/Y (2.30)

where

T~y) = ber'(y) + i bei'(y) (2.31)ber(y) + i bei'(y)

and

y = a (@opf/rI)1/2  (2.32)

and a is a parameter with the dimension of length that depends on the size and shape of the

pores.

Now, substituting the constitutive equations into the force balance equations

V. 'C = V {. (V.u) - C(V-w) } + ptV2 u + tV.(uV) (2.33)

and since

V -(uV) = V (V.u) (2.34)

V. r = (H- g.) V (V.u) - CV(V.w) + ptV 2u = -ot2 [PTU -pfw] (2.35)

and
V p = CV(V-u) - MV(V.w) 0 2[pfu -pbW] (2.36)

where H = X + 2 t.

We wish to express the equations in terms of potentials, and performing the usual

Helmholtz decomposition, let
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u = V s + VxIs ; Vs = 0 (2.37)

w= Vf + Vxf ; V.1f = 0

then

(H-i) V (V20s) - CV(V2%) + p V2 (V~s+ Vxvs) =

(2.38)

-0)2 [pT(VOs+ VXVs) - pf(VOf + Vxwf)]

CV(V 2 s) - MV(V2 0f) = -02 [Pf (VOs+ VXVs) - pf(Vof+ VxVf)] (2.39)

The irrotational field can be obtained by taking the divergence of Eqs. (2.38, 2.39),

i.e.

HV2 0s - CV2 f= -0)2 [PTOs- Pf Of] (2.40)

CV20s - MV2 f = -t2 [Pf Os- PbOf] (2.41)

and the rotational component of the field can be obtained by taking the curl of Eqs. (2.38,

2.39)

p. V2Vlrs =- (02 [PT'rs - Pff] (2.42)

PfVs = PblVf4 c -i L F(y)] Vf (2.43)
Pftgs=0 CO'=[ P X I f

The equations for the irrotational component of the field allow solutions of the form

Os (r) = Ae- i (q-r) (2.44)

Of (r) = Be-i(qr)

where q-q=k 2
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and plugging them into Eqs. (2.40, 2.41) we obtain the dispersion relation

-k2H + (02 PT k2 C - C02 1J -0 (2.45)

.k2C + (02 pf k2M. -02 Pb

or in terms of the velocity V=0/k we have

V4 (pf2 - PTPb) + V2 [pbH + PTM - 2pfC] + C2 - HM = O (2.46)

There are two solutions to Eq.( 2.46) corresponding to two dilatational waves (Type I and

Type 11) that can propagate in porous media. The Type I wave is the wave of classical

geophysics with wave speeds on the order of .95 - 1.3 times the speed of the interstitial

fluid speed for unconsolidated marine sediments. Henceforth the subscript to designate

this wave type will be "p" as a reminder that it is the classical p-wave. The Type II wave is

diffusive (that is the imaginary part of the wavenumber is not small compared with the real

part) at low frequencies for water saturated sediments and propagatory at high frequencies.

For this wave type the interstitial fluid and the sediment move essentially out of phase. The

subscript designating this wave type will be "2". The subscript for the shear wave will be

"s". Thus, the velocities for the Type I, Type I1 and shear wave will be Vp, V2 and Vs

respectively. Rewriting the potentials

Os (r) = Ape-i(qpr) + A2e-i (q2'r) (2.47)

o f (r) = Bpe-i(qP r ) + B2e i (q2 r)

we can solve for the ratio of coefficients between the two potentials using Eq. (2.45).
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Gp= H/VP2 -PT (2.48)Ap C/Vp 2 -pf

G 2 H/V2 2 -PT
G2- A2 = C/V2 2 - pf (2.49)

The dispersion relation for the rotational component of the field may be had by assuming

solutions of the form

vs = De -q.r) (2.50)

,Vt = Ee-(q-r)

so that Eqs. ( 2.42, 2.43) yield

[ -k2 1. + 02 PT -o 2 Pf1

= j 0 (2.51)

-Pf Pb

The shear velocity Vs = W is :

1/2

1 Pr- PrY~b(2.52)
and

GsE g/Vs2 - PT (2.53)

We can write the transformed displacement potentials now, letting the qi have z

components only

qi = -a3 ( - kx2) 1/2 = -a3 ai i = p, 2, s (2.54)
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for i = Type I, H, and shear waves. The x component of the wave vector is the same in

both the fluid and porous solid (Snell's law) and we choose alto be negative for waves

traveling in the negative z direction (away from the boundary), so that

Os = Ape i apz + A2ei a2z

f= ApGpe iapz + A2G2ei a2z (2.55)

Vs = a2Dei asz

Vf = a2DGsei asz

Recalling Eq. (2.37), then

u(x,y)=al --- + a3- +a 3 Ox" al s (2.56)
ax

w(x,y)=al +xfa0f + a3 4 f -  al 0 (2.57)
IX-f ~ a - al z

and from our definition of the Fourier Transform [Eq. (2.3)]

fi= ai(-kxs 5  S+a(ik +az J (2.58)

*=al,-iXqf - f)+a3- xf + 1f- I(25
az a (2.59)

so that

u=- i4al{kxApeiapz +kxA 2eia2z +asDe iaz 1+
a 3{-apApe iapz -a2A2eia2Z+kxDeiaz}1 (2.60 ,
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w=-i[al {kxGPAP iaPZ +kxG 2 A2 eia2z +asGsDeia'z I +
a 3{-apGpApeiaP - a 2G 2A 2ei2Z +kxGsDeiasz H (2.61)

Redefining the constants such that the coefficients correspond with those for the

displacement field in the upper medium, we have

-1
- Ap =(2.62)

-1
-i A2 = T2 -1 (2.63)

-1
-i D = S 1 (2.64)

where Tp, T2, and Ts are the displacement potential transmission factors for the Type I,

Type H and shear waves, respectively. The displacements in the porous medium can then

be written

fi(kx ,z) =aza {kx1peiapZ+ kxT7eia2Z +sseeiasz }+

a 3{-apTpeiapz - c 2T2eia2z +kxTseiaz }] (2.65)

*(kxz) =-I[al{kx TpGpeiapz + kxT2G 2 eia2z + asTsGse iasz I+

a3{I-a~pjGpe icpz - cca2 IG 2eia2Z + kxdT5Gseiasz ]
(2.66)
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2.2.2 Wave Velocities and Attenuations

In this section we plot Eq. (2.46 and 2.52) to demonstrate the velocity dependence

of the Type I, Type I, and shear wave on frequency and sediment type. Three sediment

types are represented: 1) an unconsolidated sand, 2) an unconsolidated clay, and 3) a

consolidated sandstone. The material properties for each sediment, required by Biot

theory, are given in Table 2.1.

Figures 2.3 and 2.4 show the frequency dependence of the phase velocities for a

marine sand. Material properties in Table 2.1 and were derived from measurements on a

shallow-water carbonate sand [Badiey et al. (1988)]. The Type I wave (the classical wave

type in geophysics) is propagatory at all frequencies and shows a phase velocity dispersion

of roughly 5% over this frequency range. The Type U wave is a diffusive wave at low

frequencies and becomes propagatory at nigh frequencies with a phase velocity about one-

tenth of that for the Type I wave. The velocity of the Type II wave in the kiloHertz region

for this set of parameters happens to be close to that measured by Paterson (1956)

(approximately 115 m/s) on a fully saturated beach sand at low confining pressures. The

shear wave velocity predicted by Biot theory is only slightly dispersive.

Figures 2.5 - 2.7 show the attenuation (scaled by frequency) as a function of

frequency. A common assumption in marine sediment acoustics is that the attenuation is

linearly proportional to frequency ( or that the attenuation scaled by frequency is constant).

The Biot theory predicts a non-linear frequency dependence of attenuation due to the

relative motion between the solid matrix and the interstitial fluid. At low frequency the

oscillating fluid obeys Poiseuille flow where the velocity distribution across a (cylindrical)

porn. is parabolic, with zero velocity at the pore wall and a maximum velocity on the axis of

the pore. At high frequency, the fluid obeys Helmholtz flow where the fluid inertia causes
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Table 2.1 Material Properties for Three Marine Sediments

Proert Units &" £ 1al Sandstone

Fluid density, (po) g/cm3  1.024 1.024 1.024

Fluid bulk modulus, (Kf) dyne/cm 2  2.38 1010 2.38 1010 2.38 1010

Fluid viscosity, (1) poise .0101 .0101 .0101

Grain density, (ps) g/cm3  2.85 2.68 2.65

Grain bulk modulus, (Ks) dyne/cm2  4.0 1011 3.5 1011 3.7 1011

Porosity, (3) --- .487 .68 .203

Permeability, (K) cm2  4.26 10-7  5.2 10-10 1.07 10-7

Structure factor, (c) --- 1.75 3.0 2.0

Pore size, (a) cm 4.18 10-3  1.25 10-4  2.5 10-4

Frame bulk modulus dyne/cm2  3.33 108+ 3.67 107+ 8.32 1010+
(Kin) i6.67 106 il.2 106

Frame shear bulk modulus dyne/cm2  2.5 108+ 7.86 106+ 8.53 1010+
i3.75 106 i2.5 105 i4.25 108
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the velocity distribution to be nearly flat across the diameter of the pore with an

infinitesimal boundary layer at the pore wall. The frequency separating these two regimes

is termed the critical frequency and is defined by

(2.67)fc = 57C X

It is clear from Figures 2.5 - 2.7 that only far below or above the critical frequency

(735 Hz) is the attenuation linearly dependent on frequency for porous media.

Figures 2.8 through 2.14 show the frequency dependence of velocities and

attenuations for a marine clay and sandstone. The influence of the velocity and attenuation

dispersion shown in these figures on seafloor reflection will be probed in detail in Chapter

Ii. Material properties for these sediments are given in Table 2.1; the silty clay properties

were taken from Holland and Brunson (1988) and the properties of the sandstone were

taken from Winkler (1985).

2.3 Application of the Boundary Conditions

There are four boundary conditions [Deresewiecz and Skalak (1963)] specified at

the interface between a fluid and a poro-viscoelastic solid:

1) continuity of normal fluid displacement

ft.Uo=h.u - A-w ;z=O

2) continuity of normal traction

H(7. u) - C(V - w) - 2g l P ; z=O (2.68)
TX=
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3) equilibrium of tangential traction

+ 0 z=O

4) equilibrium of fluid pressure (open pores)

M(V. w)- C(V- u)=p ; z=O

and the Fourier transforms of the boundary conditions are:

1) Uoz =fiz- Vz ;z=O (2.69)

2) 5 ; z=O

'63 -ikxfaz,=O ;z=O

3) ax

M ikx~x + )C ikXiix+}z+ ;z=o

Then, substituting the equations for transformed pressure and displacement Eq (2.17,

2.22, 2.65, 2.66) in the boundary conditions, the expression for the reflection and

transmission factors is obtained as:
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F 0 (1- G,) (I2(-G2 ,) -kr.(1-Gs) o

CG -H 211k 2  CG 2 -H +29k 2  2kxa g
PO 2 2 2 -z -oVP C) V2  Ci) e-io-

0a 2  (02 -k~ T2 0

C-MGp C-MG2  0

V P V2 L[
(2.70)

which can be solved (see Appendix B) to obtain the reflection and transmission factors.
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Chapter 3

PLANE WAVE COEFFICIENTS AND SURFACE WAVES

3.1 Exact Solution for Plane Wave Coefficients

In this section, the plane wave reflection coefficients from a water-sediment

halfspace are examined where the sediment is modeled as a poro-viscoelastic solid, as a

viscoelastic solid, and as a fluid. Both consolidated and unconsolidated sediments are

considered. It will be instructive to consider the reflectivity from simplest model of the

sediment to the most complex (i.e., fluid, solid, then poro-viscoelastic).

3.1.1 Single Phase Media

For a fluid-fluid interface the reflectivity is governed by

piVi cos 0o - poVo cos 01 (3.1)
piVi cos 0o + poVo cos 01

which is independent of frequency. The subscript "o" signifies the medium where the

wave originates and the 1 signifies the transmitting medium. For a non-lossy material the

critical angle is defined as the angle above which there is total reflection and is given by

ec =si1 ] ; Vi>Vo (3.2)

where Vo is the velocity of the medium where the wave originates and V1 is the velocity of

the transmitting medium. For any real material with frictional and/or viscous losses, there

is no critical angle, since there is no total reflection. It is, however, useful to refer to that

angle that divides angle space from nearly total reflection to moderate or small reflectivity.
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This angle will be called (for lack of any universally applied name) the pseudo-critical (p-c)

angle:

rRe(k)1
epc =si-1LRe(i)j ; Re{ko) >Re(kj) (3.3)

where k is the complex wavenumber. For a non-lossy material the angle of intromission is

defined as that angle for which the reflection coefficient is zero and is given by:

1/2

Oi=sin -p1 2 V 2 -po 2 V0
2 1

P12 V 2  P02 V12 J ;VI < Vo, PI > Po (3.4)

For a lossy medium, the reflection coefficient is non-zero at all angles and the pseudo-

intromission angle is:

112
pi= sin-I [p l 2  e Re fko) 2 - po 2 Re (ko} 2 1 ;Re (ko} <Re [kl}, P1 >po. (3.5)

Figure 3.1 shows the magnitude of the plane wave reflection coefficient of the

amplitude of the displacement potential for a sand, silty clay, and sandstone. The angle of

pseudo-intromission exists for the clay and pseudo-critical angles exist for the sand and

sandstone. The geoacoustic parameters are given in Table 3.1. For all plots in this chapter

the upper halfspace velocity is 1524 m/s and the density is 1.024 g/cm 3.

For a fluid-viscoelastic solid interface the reflectivity is governed by

pI V ICos o [cos2(2y) cos yl + V--1-sin2(2y1) cos 81 -poVo cosO1 cosy1

Rfs=I I 1 ]i (3.6)

PIV1 cos 00 [cos2(2Y1) cos yl + vlSin2(2y1) cos 01 + poVo cos cosY1
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which is also independent of frequency. Vs is the shear velocity and Yi is the angle of the

refracted shear wave. For this case two critical angles can arise, one due to the

compressional wave (as in the fluid case) and one due to the shear wave:

epc =sr 1  Re {ks) 1.
-If Re {ko)J ;Re {ko) > Re {ks). (3.7)

Figure 3.2 shows the magnitude of plane wave reflection coefficient for the same

marine sand, clay, and sandstone case as in Table 3.1 with shear wave parameters added

(see Table 3.2). The reflectivity for the viscoelastic sand and clay sediments is essentially

identical with that for the fluid sediments (see Figure 3.1) indicating that the conversion of

energy to shear waves is negligible for these material parameters. Loss of energy to shear

waves is clearly seen in the sandstone case (compare Figures 3.1 and 3.2) and the shear

pseudocritical angle is apparent at 510. The geoacoustic parameters are given in Table 3.2.

Table 3.1 Geoacoustic Parameters for the Single-Phase Fluid Model

Property Units Sand Silty-Clay Sandstone

Compressional velocity m/s 1638.52 1478.22 3331.52

Compressional attenuation dB/rm/kHz .07 .0018 .039

Density g/cm 3 1.961 1.554 2.320
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Table 3.2 Geoacoustic Parameters for the Single-Phase Solid Model

Property Units Sand Silty-Clay Sandstone

Compressional velocity m/s 1638.52 1478.22 3331.52

Compressional attenuation dB/rz/kHz .070 .0018 .039

Shear velocity m/s 121.83 22.5 1949.65

Shear attenuation dB/m/kHz 4.474 38.83 .239

Density g/cm3  1.961 1.554 2.320

3.1.2 Two-Phase Porovq Media

For a fluid-poro-viscoelastic interface, the plane wave reflection and transmission

coefficients are related to the reflection and transmission factors in Eq. (2.70) by

91 ei oth (3.8)

Tp = Tpeiah

2 =T 2 eiah

;s = T ei oxh

Substituting these definitions in Eq. (2.70), the factor ei ath drops out and the plane wave

coefficients depend solely on material properties and not on source height.
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3.1.2.1 Sand: VP > V0, Vs < V0

Figure 3.3 shows the plane wave reflection coefficient of the amplitude of the

displacement potential for the marine sand given in Table 2.1. There are three important

differences between the reflectivity from porous material and reflectivity from a single

phase fluid or solid material. First, note that reflectivity from a poro-viscoelastic medium

is frequency dependent. In particular the p-c angle is a function of frequency and decreases

monotonically with increasing frequency (from roughly 820 at 10 Hz to 700 at 10 kHz). It

is clear that the decrease in the p-c angle arises from the increase in the phase velocity of the

Type I wave (which is the only wave type that meets the criterion Re[ko) > Re [k1 }).

Figure 3.4 shows the frequency dependence of the p-c angle based on Eq. (3.2) for the

marine sand parameters in Table 2.1.

The second feature of importance in Figure 3.3 is the dependence of the reflection

coefficient on frequency above the critical angle. In this angular regime, the reflection

coefficient is inversely proportional to the attenuation per cycle. The minimum of the

reflection coefficient occurs at the peak of the attenuation (see Figure 2.5) between 100 Hz

and 1000 Hz.

The third feature of interest is the reflectivity at normal incidence. For a single

phase fluid, the reflection coefficient at normal incidence is

Rff (00 = 0) = lV1 - poVo (3.9)
plV1 + poVo
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which increases as VI increases. Since we have seen (e.g. Figure 2.3) that for porous

media VI increases as a function of frequency we might guess that normal incidence

reflectivity increases as a function of frequency. From Figure 3.3, however, reflectivity

decreases as a function of frequency. This is due to the excitation of Type II waves in the

porous medium as frequency increases as shown in Figure 3.5.

3.1.2.2 Silty Clay: VP < Vo, Vs < Vo

Figure 3.6 shows the reflectivity from a fluid-silty clay interface where the

parameters for the silty clay are given in Table 2.1. Over this frequency band the sediment

has a negligible velocity dispersion (see Figure 2.8) and a nearly linear dependence of

attenuation (see Figure 2.10) on frequency, thus the reflectivity is also nearly independent

of frequency. Also, the shear wave and Type IH wave in the clay have a low velocity with

respect to that of the incoming wave so that the reflectivity is negligibly influenced by these

wave types.

3.1.2.3 Sandstone: Vp > V0 , Vs > Vo

Figure 3.7 shows the reflection coefficient for the sandstone parameters given in

Table 2.1. The critical angle for the compressional wave (260) and the shear wave (500)

are both apparent. Reflectivity decreases with frequency monotonically at all angles of

incidence due to the increasing transmissivity of the Type HI wave (see Figure 3.8). The p-

c angle for the Type I wave is nearly independent of frequency since the ratio Vp/Vo

changes less than .2% over this frequency band. The p-c angle for the shear wave,

however, appears to decrease with increasing frequency. The shear velocity is indeed

dispersive, but increases with frequency so that from Eq. (3.7) we would expect the p-c
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boundary. The sediment is silty-clay.
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Figure 3.8 Plane wave transmission coefficients for the Type 1U wave at a
fluid-poro-viscoelastic boundary. The sediment is sandstone.
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angle to increase slightly with angle. The decrease in reflectivity around the shear p-c angle

(which manifests itself as an apparent shift in p-c angle) is due instead to the increase of

transmissivity of the Type 11 wave near this angle (see Figure 3.8).

3.2 Implications for Acoustic Propagation Predictions

In support of acoustic propagation experiments, sediment cores are commonly

taken to obtain measurements of compressional velocity (occasionally also shear velocity)

and attenuation. Recently, techniques have been developed to measure these quantities in

situ. Typical frequencies for either lab or in situ measurements are in the hundreds of

kilohertz. In developing a low frequency geoacoustic model, the velocity is generally

absuied mdepenaent of frequency and the attenuation is assumed linearly dependent on

frequency and extrapolated down to the frequency of interest. In this section the effects of

this oversimplified extrapolation are demonstrated, by comparing reflectivity predicted by

current methodology, as outlined above, and Biot theory.

3.2.1 Sand: VP > Vo, Vs < Vo

Figure 3.9 shows the reflectivity from a poro-viscoelastic solid as a function of

frequency along with the prediction of a fluid geoacoustic model that has been extrapolated.

(The velocity and attenuation of the fluid approximation to the sediment were calculated

from Biot theory at 400 kHz where measurements of these properties are most commonly

taken). The differences between the fluid sediment model and porous sediment model are

striking. For long-range propagation in shallow water the reflectivity at high angles tends

to determine the characteristics of the transmission loss: the location of the p-c angle

governs the number of modes that wil propagate and the reflectivity above the p-c angle
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governs the modal attenuation coefficient. The extrapolated fluid model thus overpredicts

the number of propagating modes and underpredicts the modal attenuation coefficient for

propagation between 100 Hz and several kHz. The results for extrapolating a solid model

from 400 kHz would be essentially identical to that of the fluid shown in Figure 3.9.

3.2.2 Silty Clay: Vp < Vo, Vs < Vo

Figure 3.10 shows the reflectivity from a poro-viscoelastic silty clay as a function

of frequency along with the prediction of the extrapolated fluid model (predictions of the

extrapolated fluid and extrapolated solid model were identical to within the width of a

plotted line). The complex velocity for the extrapolated model was obtained from Biot

theory at 400 kHz as in the sand case. The predictions of reflectivity using the single-phase

fluid approximation are quite comparable to the full Biot predictions except near the angle

of intromission, where the full theory predicts a lower reflectivity. At the angle of

intromission, the reflection coefficient is proportional to the compressional attenuation per

wavelength; Biot theory predicts a non-linear frequency dependence on attenuation between

400 kHz and the kilohertz regime (see Figure 2.10). Thus, the attenuation for the

extrapolated model is too high.

Seafloor reflection experiments confirm that measurements of compressional wave

attenuation at 400 kHz cannot be linearly extrapolated down to the 50 Hz - 1500 Hz band.

In this band the strongest arrival from an explosive source impinging on the seafloor at low

grazing angles comes from paths that refract through the sediment accumulating a loss

proportional to sediment attenuation. Estimates of effective attenuation from these paths

range from .001 dB/m/kHz - .03 dB/m/kHz (including measurements at roughly 200 deep-

ocean sites in the North Atlantic, Pacific, Mediterranean and Indian Ocean (C.W. Spofford,

personal communication)). Measured intrinsic attenuation in the hundreds of kHz across a

core barrel for deep sea sediment types, however, has been in the
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Figure 3.9 Comparison of reflectivity from a commonly used geoacoustic
extrapolation technique with Blot theory. The sediment is
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Figure 3.10 Comparison of reflectivity from a commonly used geoacoustic
extrapolation technique with Biot theory. The sediment is silty
clay.
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range .03 dB/m/kHz - .10 do/m/kHz. (see Hamilton (1980)). Since effective attenuation

must be greater than or equal to intrinsic attenuation it is clear that the experimental evidence

points to a non-linear frequency dependence of attenuation over the band 50 Hz - 400 kHz.

3.2.3 Sandstone: Vp > Vo, Vs , Vo

F. gure 3.11 shows the reflectivity from a poro-viscoelastic sandstone as a function

of frequency along with the prediction of the extrapolated solid and extrapolated fluid

model. Again, the complex velocities for the extrapolated models were obtained at 400

kHz. As expected, the fluid model gives a very poor approximation to the po:o-

viscoelastic results since no shear wave p-c angle is predicted. The extrapolated sc!id

model predi ztions are tolerable at the low-frequencies (less than 10 kHz) but at high

frequencies the transmissivity of the Type 11 wave can reduce reflectivity by as much as

50%.

3.3 Approximate Models

Several atttmpts have been made to use Biot theory in a simplified "Biot fluid"

formulation for unconsolidated sediments. This should be a reasonable approximation at

low frequencies since the Type I wave has a negligible influence (at least at a single

boundary) and the role of the sediment rigidity also is negligible. One such reflection

model might be Eq. (3.1) with a frequency-dependent, complex velocity obtained from

Biot predictions for the Type I wave. Likewise a "Biot solid" approximation model might

be Eq (3.6) with the velocities obtained from Biot predictions for the Type I wave and the

shear wave. Figure 3.12 contains such predictions compared with the full theory. In

Figure 3.12, the "Bit fluid" approximation to the carbonate sand is quite good at low

frequencies for all angles of incidence. The reflectivity under the approximate model,

however, increases with increasing frequency near and at normal incidence; the full theory

predicts a decreasing reflectivity with increasing frequency due to increased coupling to the

Type II wave. At low frequencies (below 100 Hz) the results of the full and approximate
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model are essentially identical near normal incidence. At 10 kHz, the approximate model

predicts reflectivity about ff % idhtr than h fll theory near normal incidence. In Figure

3.13, the "Biot solid" approximation to the sandstone is quite good at low frequencies

(below 1 kHz). At higher frequencies, the Type II wave goes from diffusive to

propagatory and more energy is transmitted to this wave type. Therefore, the approximate

model that does not include this wave type is no longer applicable, and the full theory is

required.

Beebe (1981) proposed an even simpler model, where the "Biot fluid" is modeled

as having a constant phase velocity and an attenuation where the frequency exponent is

calculated by Biot theory over the band of interest (in this case 50 Hz - 1000 Hz). The

U.S. Navy standard low frequency bottom loss data base later employed a similar sediment

model, where the frequency exponent is obtained by inversion of TL data rather than Biot

theory. It is crucial, in this approximate model, that the constant phase velocity is obtained

in the frequency band of interest. For example, in Beebe's study the velocities were

obtained by dispersion analysis in the same frequency band in which the mode attenuation

coefficients were measured resulting in ideal conditions for the approximate model to

produce good results. A similar condition is obtained synthetically in Figure 3.14 by using

a constant velocity (as predicted by Biot theory in the middle of the band of interest (50 Hz

- 1000 Hz). Figure 3.14 compares the approximate model with the full theory (for the

sand) where, in the approximate model, the imaginary part of the phase velocity comes

from Biot theory and the real part is a constant value commensurate with the center of the

band. The results are quite reasonable although the approximate model breaks down with

increasing frequency as the assumed velocity becomes a poorer approximation of the true

velocity.

Figure 3.15 shows the same comparison if the approximate model were developed

using velocity data from core analysis. That is, the velocity used in the approximate
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model here was obtained at 400 kHz from Biot theory. It is clear that using core data for

input to the approximate model yields very poor results.

3.4 Interface Waves

Before proceeding to the inverse transform we consider the interface waves at a

fluid-poro-viscoelastic boundary, the properties of which may be ascertained from the same

set of simultaneous equations that govern the plane wave reflection and transmission

coefficients. Various researchers have investigated related surface waves; however, it

appears that the general case of surface waves at a fluid-poro-viscoelastic boundary (with

complex wave speeds) has not been addressed. Deresewicz (1964) derived the secular

,quation without accounting for losses due to friction at the grain-to-grain contacts and

Feng and Johnson (1983a and 1983b) considered the high frequency limit to the Biot

theory where the viscous attenuation is zero.

The dispersion relation for these waves can be obtained by setting the denominator

of the plane wave reflection and transmission coefficients to zero. From Cramers Rule,

and Eq. (2.70) we have that

a ap(l-GP) a22 (1-G 2 ) -kx(1-Gs)

CG -H 2gk, CG2 -H 21k 2k a g
PO P + 2 + X XS

Det 2 0
0 Otp a2  V-k x - k

2Vs kx
C-MGp C-MG2  0

-po vp

(3.10)



64

where the surface wave velocity, Vsurf = c/kx. Three kinds of surface waves can occur in

the solution: a true surface wave that travels slower than all the wave speeds, a pseudo-

Scholte wave that travels between the shear wave velocity and the Type 11 wave velocity

(that leaks energy to the slower Type H wave), and a pseudo-Rayleigh wave that occurs

when the surface wave velocity exceeds the velocity of the overlying water column.

Mathematically, the pseudo-Rayleigh wave arises from a pole on the lower

Reimann sheet where Imfa) > 0 and Imnla2) > 0. The true surface wave is located on the

top Reimann sheet where Im{ct1} < 0, and the amplitude decays exponentially away from

the boundary. The pseudo-Rayleigh wave amplitude actually increases away from the

boundary (in the fluid) and this occurs because the wave radiates into the fluid at its trace

velocity so that in a given plane perpendicular to the boundary, the points closer to the

boundary in the fluid receive contributions from the wave further along the boundary

(which are less energetic). This behavior of the received amplitude of the pseudo-Rayleigh

wave is entirely commensurate with the behavior of a lateral wave.

The complex surface wave velocity from a single-phase solid will be calculated in

order to compare with the results from poro-viscoelastic theory. The secular equation is

given by Brekovskikh (1980) as:

Cc 14kx2 ap OEs + 2kx2 + 4p - = 0 (3.11)
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3.4.1 Sand: VP > Vo , Vs < Vo

For the same sand case considered previously, the surface wave velocity as a

function of frequency is plotted in Figure 3.16 along with the phase velocity of the Type II

and shear wave. Note that the surface wave changes continuously from a pseudo-Scholte

wave to a true surface wave at about 700 Hz1 . Also plotted in Figure 3.16 is the surface

wave velocity in the single phase solid approximation, where the complex phase velocities

used to calculate the surface wave velocity were taken from Biot theory at 400 kHz. The

single phase approximation to the surface wave velocity is roughly 10% higher than the full

poro-viscoelastic predictions over this frequency band. The attenuation of the poro-

viscoelastic surface wave shows a similar frequency dependence to the Type I and shear

wave (Figure 3.17). The single-phase solid approximation to the surface wave attenuation

is in general too conservative.

3.4.2 Silty Clay: VP < Vo, Vs < VO

The surface wave velocity for the silty clay changes continuously from a pseudo-

Scholte wave to a true surface wave at 167 kHz (see Figure 3.18). The velocity dispersion

of the surface wave is small so that the surface wave velocity under the single-phase solid

approximation is quite good for this case. The single-phase approximation to the

attenuation (Figure 3.19), however, is very poor.

1. The surface wave velocity and attenuation at 4.5 Hz (10i m/s and 25 dB/km) is
coincidentally comparable to that measured by Shirmer (1980) (111 m/s and 7 dB/kin) on a
sandy bottom (of unknown material parameters) in the North Sea.
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Figure 3.16 Phase velocity of various wave types in carbonate sand;
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(porous SW); pseudo-Scholte wave at a fluid-viscoelastic
boundary (solid SW); shear wave in a poro-viscoelastic
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Figure 3.18 Phase velocity of various wave types in silty clay; pseudo-
Scholte wave at a flu id- poro-viscoelastic boundary (porous
SW); pseudo-Scholte wave at a fluid-viscoelastic boundary
(solid SW); shear wave in a poro-viscoelastic sediment
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Figure 3.19 Attenuation of various wave types in silty clay; pseudo-Scholte
wave at a fluid-poro-viscoelastic boundary (porous SW);
pseudo-Scholte wave at a fluid-viscoelastic boundary (solid
SW); and shear rvave in a poro-viscoelastic sediment (shear).
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3.4.3 Sandstone: Vp>Vo, Vs>Vo

For this sediment (Vs>Vo), both the pseudo-Scholte wave and the pseudo-

Rayleigh wave exist. For both the pseudo-Scholte (Figures 3.20 and 3.21) and the

pseudo-Rayleigh (Figures 3.22 and 3.23) surface wave types, the single-phase

approximation is reasonable for the velocity but quite poor for the attenuation.

There is some difficulty associated with assigning a wave speed and attenuation to

the pseudo-Rayleigh wave. Consider two studies of a fluid-solid boundary with surface

waves excited from an impulsive source. Van der Hijden (1984) states that "from a

mathematical point of view it is not appropriate to associate with [Vsurf] a pseudo-RayleiL.,

wave speed because there is no wave front associated with this phenomenon." He

considers the possibilit, of using the true Rayleigh wave speed (calculated as if a vacuum

replaced the fluid) to describe the velocity of a pulse and attributing the change in shape of

the pulse to some dispersive property. He opts instead to use Vsurf as the "pseudo-

Rayleigh travel speed" which describes the speed of the pulse maximum. Roever et al.

(1959) on the other hand demonstrate experimentally and theoretically that the zero-

crossing of a pseudo-Rayleigh wave does travel along the boundary at precisely the

Rayleigh wave velocity; that is independent of the fluid properties! Roever et al. (1959)

indicate, however, that the zero crossing of a pseudo-Rayleigh wave excited by a time

harmonic source does travel at Vsurf (i.e., is influenced by the properties of the upper

halfspace). Since this study considers the response of the boundary of a time harmonic

source, Figures 3.22 and 3.23 represent solutions to the secular equation accounting for the

properties of the upper halfspace.
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Figure 3.21 Attenuation of various wave types in sandstone; pseudo-
Scholte wave at a fluid-poro-viscoelastic boundary (porous
SW); pseudo-Scholte wave at a fluid-viscoelastic boundary
(solid SW); and shear wave in a poro-viscoelastic sediment
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Figure 3.22 Phase velocity of various wave types in sandstone. Pseudo-
Rayleigh wave at a fluid-poro-viscoelastic boundary (porous
RW); pseudo-Rayleigh wave at a fluid-viscoelastic boundary
(solid RW); and shear wave in a poro-viscoelastic sediment
(shear).
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(solid RW); and shear wave In a poro-viscoelastic sediment
(shear).
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3.5 Summary and Conclusions

In this chapter, plane wave coefficients for fluid-fluid, fluid-viscoelastic, and fluid-

poro-viscoelastic boundaries were compared. Biot theory predicts frequency dependent

plane wave reflection (and transmission) coefficients as compared with the frequency

independent coefficients predicted using single-phase fluid or viscoelastic theories.

For the sand case the critical frequency (Eq. 2.67) was low enough to be in the

frequency range of interest. Therefore, the velocity and attenuation of each wave type

(especially the Type I wave which is the most important wave influencing reflectivity for

this sediment type) varied non-linearly over the band of interest leading to the frequency

dependent plane wave coefficients. For the silty clay case the critical frequency was high

enough that the velocity of the Type I wave (the only wave participating strongly in the

reflection and transmission process) was nearly constant with frequency and the attenuation

was slightly non-linear with frequency. The reflection coefficient was independent of

frequency over the 10 Hz - 10 kHz band. For the sandstone case, the velocities of the

Type I and shear waves were only weakly dispersive. From previous results this suggests

that the plane wave coefficients should exhibit only a weak frequency dependence. In this

case, however, the velocity dispersion of the Type 11 significantly influenced the plane

wave coefficients at high frequency.

In attempting then to specify criteria for when the single-phase models may be

substituted for the full theory, two factors must be taken into account: 1) the frequency

dependence of the plane wave coefficients (arising from the frequency dependence of the

complex wave velocities) and 2) the role of the Type 1I waves.

First consider the frequency dependence. It is the critical frequency that determines

whether or not the full Biot theory is required for predicting energy balance at the seafloor.

If the critical frequency for a particular sediment type is well outside the frequency band of

interest, then a single phase model will give a good approximation to the reflection
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coefficient. If the critical frequency (Eq. (2.67)) is near the frequency band of interest,

however, the complex wave velocities will vary substantially across that band and the full

Biot theory will be required. This last conclusion presupposes that the reflection equation

will be sensitive to the frequency dependence of at least one of the three wave speeds

predicted by Biot theory. While this may not be true for an arbitrary fluid- porous material

interface, it is expected to be true for the ranges of interface types found at the seafloor. A

word is in order here regarding the phrase: "frequency band of interest". Certainly it refers

to the frequencies over which the acoustic measurements were taken. However, if

geoacoustic properties were measured on core samples at high frequencies, the "frequency

band of interest" referred to in the above criterion must be expanded to include these

frequencies. It was shown that the traditional extrapolation of geoacoustic properties from

core data can lead to erroneous results (at least with respect to Biot theory) when the critical

frequency is between the measurement bands of the acoustic data and the geoacoustic data.

The second factor- the role of the Type II wave is somewhat simpler. The Type II

waves are only important to reflection/transmission at high frequencies where they are

propagatory: "high frequencies" roughly corresponds to frequencies above the critical

frequency.

The surface waves arising at a fluid-poro-viscoelastic boundary were also examined

and compared with the classical single-phase solid approximation. The single phase solid

approximation provided a reasonable approximation to the surface wave phase velocity (as

predicted by Biot theory) for all three sediment types, however, in all cases neither the

magnitude nor the frequency dependence of the attenuation was adequately predicted.
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Chapter 4

THEORY H - INVERSE TRANSFORM

ln this chapter the integral expressions for the field quantities in the upper and lower

halfspace are evaluated by a "mixed" approach, a numerical integration and by the Fast

Fourier Transform (FFT). The mixed approach consists of breaking the field into

components representing, for example, contributions from the direct wave, the

reflected/transmitted geometrical optics wave, and the various head and surface waves.

Results from the mixed approach and the FFT are compared to examine the bounds of

applicability for each.

4.1 Mixed Approach

4.1.1. Field in Upper Halfspace

The expression for the pressure field in the upper halfspace is obtained by Fourier

Transforming Eq. (2.17):

p(x,z-- 0) - 0(0 +9?e-icz}-le- ikxxdkx

4x ~" 1(4.1)

where the first term corresponds to the direct field and the second term to the reflected field.

The reflected field can be conveniently decomposed into (1) a contribution from plane

waves reflected at the interface near angles predicted by Snell's law (the geometrical ray

term); (2) a contribution from head wavtes (arising from branch points in the reflection

factor 9); and (3) a contribution from surface waves (arising from poles in 9). Each of

these contributions will be considered separately in the follow.ng sections.
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4.1.1.1 The Direct Field

The integral expression for the direct field can be solved exactly:

1 2( 2 (r 2  h)]/'

Pd(x,z>__0)=-1pooH o (2ko) x + (z- 'J) (4.2)

which represents an outgoing cylindrical wave radiated from the line source.

4.1.1.2 Reflected Field (Geometrical Ray Path)

The integral expression for the reflected field is

2( _ 2 2112 /eikxXdkxpr(X~>O)=iPoco " ~-i(k°-k) ( 2 -)(k2_kkx

4z _.( 
(4.3)

where the plane wave reflection coefficient has been substituted for the reflection factor

using Eq. (3.8). Making the transformation, kx = ko sin 0, and employing the coordinate

system (see Figure 4.1): x= s sin eo and z+h = s cos 0o, Eq. (4.3) can be written:

---+i-a

2

Pr(xz 2! = 41C f §e-ikoscosO-O)dO
4 X .

2 (4.4)

The method of steepest descent is employed to evaluate this integral. The method

considers integrals of the form

I=f F(0)ePf(0 ) dO (4.5)
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in the complex plane, where F(O) must be a slowly varying function of 0. The technique

consists of finding the saddle point of the function f(0) and the pa:h along which the

function decreases most rapidly. The original path of integration is then deformed along

that path and the integrand is expanded in a Taylor series around the saddle point. Since

most of the contribution to the integral comes from near the saddle point, the function can

be approximated by a few terms and the integral is evaluated term by term.

Letting F(O) =§-, p = ko s, and f(O) = -i cos (0 -0o), the saddle point, Osp, is defined at

t'(0) = 0 which gives

Osp = Oo0 (4.6)

Thus, the saddle point is simply located at the angle of incidence corresponding to the

geometrical ray path and is real for real velocity Vo, varying from 0 to 7/t2 radians. The

path of steepest descent is defined where the imaginary part of f(0) is constant,

Im~f (0)1=Imjf (8 )} (4.7)

or

Re{cos0cosOo +sinOsinO o }=l (4.8)

Letting O=OR + i 01 the path of steepest descent is defined by,

cosh 01 cos(OR - 1 (4.9)
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In Figure 4.2, the complex 0 plane is shown with the original path of integration,

the saddle point, the steepest descent path, and the branch cuts associated with each wave

type. Note that there is no fluid wave branch cut because of the choice of transformation;

that is, a = ko cos 0 and is no longer discontinuous. The branch cuts are placed for the

marine sand case (Vp > Vo, Vs < Vo, V2 < Vo). By Cauchy's theorem the path of

integration in the complex plane may be deformed arbitrarily without changing the value of

the integral provided that the end points are not deformed and no singularities are crossed

from one path to the other. Taking the first term of the Taylor series (Brekovskikh (1980),

Eq. 27.9) we have

2 ]1/2

4 0 k~o s e(4.10)

Since the Taylor series is expanded in orders, 1/kos, Eq (4.10) is a high-frequency, far-

field approximation, and is valid for kos >>1. The region of validity is also restricted by

the approximation of a slowly varying §l(0o), so that Eq (4.10) will not be valid near

pseudo-critical angles or angles of pseudo-intromission. Writing the asymptotic

representation of the Hankel function as

H( 2'(ks) [- - 1'° 5 e k 4)( 8k~s "". (4.11)

the expression in Eq (4.10) for the reflected pressure can be considered to represent an

outgoing cylindrical wave at the image source, modified by the plane wave reflection

coefficient, to first order.



82

2
BC.\

BC2

original path SP
of integration sadde

BC-p

2 X~'
It

Figure 4.2 Complex e plane toi the reflected field showing the original
contour; the saddle point ;the steepest descent path (SDP); and
the Type 1, Type 11, and shear wave branch cuts (BCp, BC2,
and BC3 respectively).



83

4.1.1.3 Reflected Field (Head Waves)

When the angle of incidence becomes such that the steepest descent path crosses

over a branch point, the path starts and ends on different Reimann sheets. Cauchy's

theorem for deforming paths is then violated since at one end point the original end point is

on the upper sheet and the steepest descent path is on the lower sheet. In order to remedy

this situation the path of steepest descent may be deformed as in Figure 4.3 following

Brekovskikh (1980) where the path around the branch cut gives the head wave contribution

and the rest of the path yields the reflected field approximated by Eq (4.10).

1. Type I Waves

Considering just the contribution from the head wave field arising from the Type I

wave branch point we have that

Php(XZ-O) [ 0) = - + e dO + ip e k (e-)dO]
41c apt

(4.12)

where " p+ is the reflection coefficient on the left edge of the cut where the real part of (k2p

- ky")7 /2 is positive and the 9p. is the reflection coefficient on the right side where the real

part of the root is negative. Along the branch cut, Im((kp2 - kx2 ) 1/ 2 ) = 0. Combining the

limits of integration

_iP~o)O2 Opc -i~ o(-Od

Php (x, z t 0) = I (%+ - p)eiks cos(0-°)d0
-i** (4.13)

This expression can be evaluated by numerical integration and the simplest wF v of

numerically treating the contour is to transform the equation back to the kx plane such that

the path of integration becomes a straight line;
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Figure 4.3 Deformation of steepest descent path around the Type I wave
branch cut. The dotted portion of the path is on the lower
Reimann sheet.
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Php(X,Z >0)= ip0 c 2  
-- op.+ i(ko) 0 (z+h)(k2 ) - k 'e ikxd- 4g "- + p e  

0

(4.14)

Thus far, the generation of head waves for the case where the Type I wave velocity

is greater than the upper halfspace velocity has been considered (Vp > Vo). This is the

wave used in seismic refraction methods to estimate sub-seafloor layer velocities (see, for

example, Clay and Medwin (1977)). We now consider the case Vp < Vo which results in

moving the branch point (and cut) from the fourth to the second quadrant of the complex 0

plane. When the path of steepest descent crosses the branch cut, the path can be deformed

as before around th. cut, and the head wave contribution is again obtained by Eq (4.13).

For this case the head wave is exponentially damped away from the boundary. The

pseudo-critical angle is complex and greater than 7r2 when Vp < Vo and is obtained by Eq.

(3.3).

2. Type II and Shear Waves

There is also a Type II head wave for both cases: V2 > V0, and V2 < Vo. The

derivation of the field is entirely analogous to the derivation for compressional waves so

that

_ipo0) 2 k2 i(k.2-k2.)u2(z+h) k2 2 1/ 2 ik xd

Ph2(X, Z 0) = - ' f .f2+- 2 - )e ( o-kx) e- dk xc-io+k2  (4.15)

and the steepest descent path first crosses the Type II wave branch cut at

cosh 0Ipc2 cos (ORpc2- 0 )=l, where

Opc2 = in1[Reko}j
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The contribution from the shear wave is likewise given for both Vs > Vo and Vs < Vo as

(4.16)
k s i( k 2 k 2) 2 ( h)2 2 1/2

ph(x,z _0) :-iP4n 2  f ("'s+_- 9 )e-i(kokz (k2k2)-/e-ikxxdkx
-ioo+k,

and the steepest descent path first crosses the shear wave branch cut at
cosh 0 PCs cos(OR P s -0o) = 1 where Opcs is given in Eq (3.7). The shear and Type I head

waves decay exponentially away from the boundary when the velocity is less than the

upper halfspace.

4.1.1.4 Reflected Field (Surface Waves)

When the angle of incidence becomes such that the steepest descent path crosses

over a pole (or poles) of the integrand Cauchy's theorem requires that the sum of the

residues of the pole(s) (times 2x i) be added to the field. The physical meaning of this

contribution is the phenomenon of surface waves. The poles arise from the denominator of

the reflection coefficient. The surface wave field can be written for a single pole as:

Psf (0) = Poo 2 res{I(O)[eikos(0] (4.17)

or in terms of Cartesian coordinates

( ,zWi e k - )x '
2 (z+h) .-ikx[

(4.18)
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where

res{9R(O)j --res{~f(kx)(kO - k)

and the spatial dependence of the field is contained within the square brackets. For a

simple pole
res;N(~j- A-40) ,where N~(O)- A-. (0)

A+(0)'whe A+ (0) (4.19)

and the prime denotes a derivative with respect to the argument. There is no loss due to

geometrical spreading expressed in Eq (4.17, 4.18) since the solution is confined to one

horizontal dimension (surface waves spread in two horizontal dimensions). The intrinsic

absorption in the horizontal dimension is given by the term exp(kI x) where kI is the

imaginary part of the surface wave wavenumber.

The location of the surface wave poles as a function of frequency for sand, silty

clay, and sandstone is shown in Figures 4.4 - 4.6, respectively. For each sediment type

the pole is located close to 900 on the real axis and the position on the imaginary axis is

strongly a function of sediment type. From Figure 4.2 we see that the path of steepest

descent will cross the silty clay surface wave pole even for modest angles of incidence. A

larger angle of incidence is required for the sand surface wave pole to be crossed and yet

larger for the sandstone surface wave pole.

4.1.2 Field in Lower Halfspace

For the field in the lower halfspace we must first choose the quantity of interest.

The most common measuring device used in the seafloor is a geophone (that measures

displacement) and recently in the underwater acoustics community several experimenters

have employed a hydrophone (that measures the pressure field).

lie pressure field in the interstitial fluid is given by Eq. (2.25). Using the

expression cor u and w in Eq. (2.65) and Eq. (2.66)
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Figure 4.4 Pseudo-Scholte wave pole location in the Complex Angle Plane
for Sand.
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Figure 4.5 Pseudo-Scholte wave pole location in the Complex Angle Plane
for Silty Clay.
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Figure 4.6 Pseudo-Scholte wave pole location in the Complex Angle Plane
for Sandstone.



91

C.0 22 i1X27 e-i(ah+k,x)

p(x,z- <0)=--L f [k2(MGp -C)TpeiaPz+k2(MG 2 - C'Te_ dkx
4n _. P a

(4.20)

The total displacement field D is given by D=u+U=2u-w/03 or:

1 n* - i /f3)+kxI2eia2z(2 -  f)at~is(

D=1 la kxTpe (2- G2 / -G2 / 0)+as1eia'z(2 - Gs / 0) J+

a 3{ap peiaPz(-2 + Gp / D3)+a 2 T2eia2Z(-2 + G2 / )+kx-seiasz(2-Gs]/3)} ]x

e-i(h+kx)

a

(4.21)

The integral expressions for the transmitted pressure and displacement field will be

evaluated in like manner as the reflected field by considering the contribution of each wave

type separately including the geometrical ray path, the various head waves, and the surface

waves.

4.1.2.1. Transmitted Field (Geometrical Ray Path)

In order to obtain the first-order contribution to the geometrical ray path, we

proceed (as with the reflected field) to transform the integral to the complex 0 plane. In the

integral representation for the transmitted field consider the two square roots, (k0
2 - kx2) 1/2
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and (kp2 - k, 2)1/2 in the exponential. The latter square root suggests a complex angle

transformation kx = kp sin 0 . This transformation (by proper choice of coordinate

system) will lead to an integrand commensurate with that for the reflected field except for a

square root in the denominator (k0
2 - kp2 sin 0)1/2 giving rise to a pole (collocated with a

branch point) in addition to the poles from the transmission coefficient Tp(0). In order to

avoid this singularity, the transformation kx = ko sin 0 is chosen. The next step is the

choice of a suitable coordinate system, because the coordinate system influences the

robustness of the asymptotic approximation. Candel and Crance (1981) show how the

choice of a coordinate system centered at the source (as was done for the reflected field)

yields a poor approximation to the transmitted field for geometrical ray paths near and

above the critical angle. They suggest rather a system centered at a virtual source depicted

in Figure 4.7 and defired by

(4.22)
x -Xp =Sp sin0p

Z-zp =- sp cos0p

SP =[(X - x) 2 +(z _

9 =sin-'jPsinOJ
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Figure 4.7 Coordinate system for the transmitted field. f he true source
height is "h" and the virtual source location is "v". For lossy
media the virtual source coordinates are complex.
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This coordinate system will be employed in the following. Unlike the Candel and Crance

exanple, however, the lower halfspace of interest in this work is lossy (i.e. VP is complex)

such that angle of refraction, 0 p, and the reference lengths Sp, Xp, and Zp are all complex

(see Appendix C).

Rewriting the first term of Eq. (4.20) now with the transformation kx = ko sin 0

and the coordinate system above, we have that

-=+iP _iJk2 t2 sin 2 0)1/ 2 (zp_Sp cos 0)

2

e- ikoh cos0 e-iko sin0(spsin 0p+Xp) dG

(4.23)

For the method of steepest descent let

p=kosP

- ,02 ~ 20 1/2A
f (0)=-i -- sn2 s cose p +sin0in0pIf I
F(O)='Tp(O) ei(kO -k 2 sin 2)' 2zP -iko(h coso+ xp sin 0)

(4.24)
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The saddle point is then defined at

f'(0)jo~~e~, =O=cos0sinO -sin0cos[.in j

I V(4.25)

and with the relation (Snell's law) sinpVP sin the saddle point isVo

Osp = 0o . (4.26)

The saddle point for the transmitted field in this coordinate system is simply the angle of

incidence corresponding to the geometrical ray path. There is a subtlety, however, that

bears explication. The geometrical ray path (as shown in Figure 4.7) connects a ray in the

upper medium traveling at real angle 00 with a ray in the lower medium at real angle 0 1p.

The real angle of transmission for a lossy medium is the angle associated with the real part

of the wavevector which points perpendicular to the wavefronts and is given by

Op =tanI lsin0O /V Rej[ I- VP2sin 20~ /]}J]

Vol (4.27)

while the angle of transmission, 0p, associated with the virtual source in Eq. (4.22) is

complex and given by Snell's law.



96

Now the steepest descent path is given by

Im~f(O)}= Imjf(OSp)} (4.28)

or

Re{CsV20)/ cose +sin0sinO }Re..}.

and at the saddle point,

(4.29)
f (00 ) iVY0

f -(00 ) = PO2o
Vos 02 P (4.30)

therefore

I,=-Lk2~~ FfivE, COSOP q --ikP(PzCSP (s.hO9,Xsn-
4x Pk (MGP - c) IOsPVP COS 0  p~(O 0 ) e e -~oO)ioh~~~~sn 0

(4.31)

Thus from Eq. (4.20) we can write

2giVC~s~ ~(0 ~i~I~ + (4.32)

p(x, z<0)= [k2 (MGp -C) F2sCVO Cos Oo p 0pe P+

02 (MG2 -C) 27giV0 COS0 2 '2()2ei1
-ks2V2 cOSos02

where



97

0op =sin-1 V°sinOpJ( vp

0o2 =sin-(V2-sin02J

N i=ki(si-zicos0i)+ko(hcos~o i + xisin0oi) ; i=p,2

Note that the two terms in Eq(4.32) represent two ray paths at two distinct angles. Thus

for a porous medium, the first order predictions consist of two contributions as compared

with the one contribution predicted by single phase theories.

For the displacement field.

D=-1a,12 - Gp / 1)k, tan8 0 Cos Tp (O0 e 4 1 P +

(2-G 2 / P)ko tan Oo2 . ose2  2(Oo) -'
kos2 V2

(2-Gs/2)kscos s  c°S0s T, 0s) 1e- i

(.1~o kOkssVS cOS 0os

a3 {(2-GP/f)kpcosOe f 2n iV0 cosep _ (e)iwI +
k~s~V coseo,

(2-G kO /2cos6 2 v0 cos8O0 2 72(0o2 )e -

(-G/) k0 s2 V2 cos002

(2 - Gs / P)ko tan 0k 0sV(Oos)e - i " ]

(4.33)
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4.1.2.2 Transmitted Field (Head Waves)

As in the reflected field, the head wave contributions come from an integration

around the branch cuts and are given by

(4.34)

k

Php(xz < 0)- ipCO2  
k Mop-C.. az/ - TP e-Pz) +

-io+kp p

MG2 - C (Te _l-i(ah+kx)

P0V2  ]aX

Ph2(x,z < 0) i ° 2 Mop-c(. - Tp2 )c apz +J / ,v2 (TP2+ +)ip

-i+k 2  
°

MoV2

2 ks

Phs(X,Z 0) - I p°V p s+ - e" PsC +
-+ks IIOV

MG 2 -C , -  - " di(ah+kXX)

(4.36)

The sub-subscripts refer to the sign of the vertical wavenumbers (ap, a12, as) which are

real on their respective branch cuts; for example ;Tpp+ is the transmission coefficient for

the Type I wave evaluated on the left-hand side of the Type I wave branch CuL
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4.1.2.3 Transmitted Field (Surface Waves)

As in the reflected field, the transmitted field due to a surface wave can be written in

terms of the residues of the simple poles of the plane wave coefficients. The poles for the

transmitted field are identical (co-located) to .. se of the reflected field. For the pressure

field we have:

12 -- i(k 2-k 2sin 20)112 (Zp-_SpCO

Psurf 9~,= - -[k (MG - C)res{jTp(O)}e P 0k sn-sCOSP) X

e. iko(hcos0+sin 0(sp sin OP +xP) ) +

.-k 2= .,,' i(k 2-k2 sin2e0)l12(Z2-s cs 2

k2 (MG 2 - C)res )k2 (k)e s2 o ) 2  CO 2) X

eik(hcosO+sin(s 2 sin 2 +x 2 ) pole

(4.37)

4.2 FFT Evaluation of Field Integrals

The expressions for the reflected and transmitted field are in the form of Fourier

integrals such that the Fast Fourier Transform (FT) method can be used for numerical

solution of the field quantities. For example, the integral in Eq (4.3) can be approximated

by a finite Reimann sum

2 N-I ' (kn) -(-k, z+h) -k221,d

n=O ( - /X

(4.38)
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With the following conditions on x, kx and spatial resolution Ax:

x.e =mAx m=0,..., ,N-I

kxn =nAk X n =0, ... , N-1I

Ax=2 /AkXN (4.39)

we have that

2 N-I 2 2(nAk)12

P(Xm.,Z) = -t n= (k3 -: N~nAkx) )1/2 e- 0-nflAkx)(z+h)ei27nmNAx

p(XmZ) 1 = 0€ Nl(k2 _ n 2Ak2)/

(4.40)

This expression is a discrete Fourier transform of the function in curly brackets and may be

calculated as an FFT.

In order to avoid spectral aliasing the sampling frequency ks = Akx N must be at

least twice that of the highest frequency to be transformed. The local oscillation frequency,

however, of Eq (4.3) is

d 1+ -k)1/(Z~~l=kx(z+h)
d{(ko (z J k) (4.41)

which tends to infinity as kx approaches ko, so that some aliasing will occur. In practice ks

is chosen a few times greater than (k(z+h)) max.

Another problem arises due to the denominator in Eq (4.3) which goes to zero

when kx = ±ko. This integral can be interpreted as Cauchy principal values [Candel and

Crance (1981)] and ko should divide a sampling interval in equal halves such that



101

ko = (J + 1/2) Akx (4.42)

where J is an integer less than N/4. The spatial window of the transformed result will be

L=NA X=(J+1/2)Xo. (4.43)

In the following, N is chosen to be 2048 and J is 200, therefore A2A - 10 so that spatial

wavenumbers up to 5 ko will not be aliased.

4.3 Comparison of Two Approaches

In this section, the results from the mixed approach are compared with the FFT

results in both the upper and lower halfspace.

4.3.1. Upper Halfspace

The comparison explicitly stated for the upper halfspace is

F- (I+,)e-ia(z+h) }AkX =1>-in(1+ N( 0 ))H( 2)(kos ) +

3 kj ( )e a(z+h)

j=1 -io+kj

21y res{ e-ia(z+h)e - ikix}

(4.44)

where T-' indicates inverse Fourier Transform, Akx is the sampling interval in the FFT,

and the index "j" on the head wave summation (second term) refers to the three wave types:

Type I, Type II, and shear wave. The plane wave reflection coefficient also has the

subscript "j" in this term to indicate that along the path of integration (i.e. the branch cut)



102

the vertical wave number associated with each wave type is real, and is positive on the left

side of the cut and negative on the right side. The terms on the RHS of Eq (4.43)

represent, in order, the geometrical ray path contribution, the contributions from the three

head waves and the contributions from surface wave(s). The quantity (1 + 91) was chosen

for comparisons because it is functionally less complicated than 9t and was consequently

more stable in the FFT calculations.

Figure 4.8 shows the comparison at 100 Hz between the "exact" (numerical

integration) solution, the FFT result, and geometrical ray path for source and receiver

height of 50 meters (about 3 wavelengths) above a silty-clay poro-viscoelastic halfspace.

For this geometry and sediment type the contribution of surface and head waves are

negligible. In addition, the first order geometrical ray approximation quite adequately

predicts the field. For Figures 4.8 - 4.11, the horizontal distance is expressed in

wavelengths in the water.

Figure 4.9 shows a comparison at 100 Hz of the FF1, the geometrical ray path, and

the "exact" solution for a source and receiver heights of 20 meters (about 1 wavelength)

above a poro-viscoelastic sand interface. For this geometry and sediment type the

contribution of surface and head waves are negligible. The geometrical ray approximation

is adequate out to about 10 wavelengths. At this range the angle of incidence approaches

the critical angle and the assumption that 9t(8) is slowly varying breaks down.

Figure 4.10 shows a comparison at 10 Hz of the FFT, the surface wave, and the

two head waves for a source and receiver on the boundary of a poro-viscoelastic sand

halfspace. For this geometry the contribution of (1+91) in the geometrical ray theory limit

is zero. The difference between the "exact" result and the summation of surface and head

waves is due to the fact that the condition of a slowly varying 91(8) is violated at all ranges

since the geometrical angle of incidence is 90 degrees. At 90 degrees the function 91(8) is

even more rapidly changing than at the critical angle. Thus, many terms in the expansion

of 9t(8) are required.
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Figure 4.8 -Reflected plus image source field at 100 Hz calculated by FF17,

numerical integration, and asymptotic expansion. The source and receiver
are 50 m above a poro-viscoelastic silty clay balfspace.
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Figure 4.10 -Reflected plus image source field at 10 lRz calculated by FF1'
and numerical integration. The source and receiver are on the boundary of
a poro-viscoelastic sand halt'space.
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4.3.2 Lower Halfspace

Figure 4.11 shows a comparison at 100 Hz of the FFT, the geometrical ray path,

and the "exact" solution. Here the source and receiver are 20 m (about I wavelength)

above and below a poro-viscoelastic sand interface, respectively. For this geometry and

sediment type the contribution of surface and head waves are negligible. In addition, the

geometrical ray approximation quite adequately predicts the field.

Predictions for the transmitted field were also made on the boundary for the sand

case as a test to make sure that the boundary conditions were met numerically. The

pressure field predictions for the transmitted field were in fact virtually identical with the

sum of the incident and reflected field results on the interface.

4.4 Summary and Conclusions

In this chapter, the integral expressions for the field from a line source above a

poro-viscoelastic halfspace were evaluated: by a decomposition of the field into various

wave types (the "mixed" approach), and by FFT. The mixed approach results were

compared with the exact solution and the FFT results in order to determine which wave

types were contributing to the field for several examples. These results could have been

compared with commensurate quantities using the single phase models, however, the

differences would be entirely due to differences in the plane wave reflection and

transmission coefficients. The poro-viscoelastic and single-phase models of plane wave

coefficients were previously (in Chapter 3) compared in detaiL
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Chapter 5

COMPARISONS WITH EXPERIMENTAL DATA

Recent experiments [Chotiros (1989), Satkowiak (1988), and Muir et al. (1979)] of

acoustic interaction with the seafloor have indicated anomalous behavior of high-frequency

transmission through the water-sediment interface when the surficial sediments are granular

(sands). The unexplained results include anomalously high transmission near the critical

angle, anomalously low phase speeds in the sediment (-1000 m/s), and angles of refraction

in the sediment that appear not to obey Snell's law. The anomalies are defined as lack of

agreement with classical, single-phase models of transmission at the interface between two

semi-infinite halfspaces. By contrast, the experiments indicated good agreement with

classical single-phase models when the sediment is clay-like.

One of the anomalous experimental data sets will be compared against the

predictions for transmission through a poro-viscoelasdc interface to determine whether

whether the Type I wave plays a significant role in the transmission process and is the

cause of the anomalies. The acoustic data set reported by Chotiros (1989) was chosen for

analysis in this chapter because the accompanying, comprehensive sediment geophysical

and geoacoustic measurements were more complete than for any of the other data sets.

A brief description of the experiment [Chotiros (1989)] follows. A three-

dimensional array of 12 hydrophones was buried to record various aspects of a transmitted

pulse. The hydrophones were arranged in two orthogonal ve-ical planes on two sides of a

cube approximately 40 centimeters in length. The shallowest probe was set at 5 cm below

the water-sediment interface at the intersection of the two planes. The source was mounted

near the top of a tower (4.5 meters above the seafloor) that could be moved along the

seafloor by divers to vary the angle of incidence of the impinging sound field from normal

incidence to a nominal grazing angle of 22 degrees (see Figure 5.1). 'he frequencies used

in the experiment were 5, 8, 15, 20, 30, 60, and 80 kIHz and the associated beamwidths (at
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the 3 dB down points) varied from 45 degrees vertical and 30 degrees horizontal at the

lowest frequency to 3 degrees vertical and horizontal at the highest frequency. The raw

acoustic data were processed for signal energy densities and relative arrival times using a

cross-correlation technique and a homomorphic deconvolution method; plane wave front

direction and group velocity using a least squares approach; and the transmitted sound

pressure level (SPL) which required essentially no signal processing. The generated

signals included various pulse shapes and lengths, however, for the data of interest to this

chapter, no dependence on pulse shape or length was found. An extensive set of

geoacoustic measurements were made at the experimental site (the particulars of the

geoacoustic data are discussed in detail in the following section, section 5.1) and the buried

hydrophone array data were compared with the SAFARI [Schmidt et al. (1985)] model

using the measured sediment geoacoustic properties as inputs.

The receivers buried in the sediment were hydrophones and as such measured the

transmitted pressure field. It will be assumed that the receiver was measuring the pressure

field in the interstitial pore fluid (although it is not clear that the fluctuations of the solid

sediment frame against the hydrophone diaphragm did not also contribute to the measured

signal). The theoretical transmitted pressure field in the pore fluid was derived in Chapter

IV and is given by Fq (4.20). The differences between the formulation in this work (Eq

(4.20)) and the experimental data just described include:

Theoretical Model Experin~tal Data

Continuous Wave Pulse
Line Source Beamed source with beamwidth a function of frequency
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Figure 51 Layout Of the experiment (Choliro., (1989))
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Although Eq (4.20) could be modified to take into account the effects of a finite pulse and

the aperture, the processing involved to make predictions directly comparable to the

experimental data seemed fraught with difficulties, the resolution of which seemed beyond

the scope of this work. Thus, the predictions of Eq (4.20) will be used to examine trends

in the experimental data with the goal of determining how the two-phase nature of a

granular sediment can influence transmissivity. The experimentally measured sound

pressure level (SPL) will be focused on since this was a direct measurement. The other

quantities (wave velocity, transmission coefficient, refraction angle, and absorption) were

derived quantities (from several least-squares and deconvolution techniques) and not truly

comparable to simple notions of these quantities because of the interference of the

evanescent field. Comparison of these derived quantities with the theory herein would

require using the ARL-UT processing programs on synthetically generated array data. This

was not done.

The approach taken here in the data comparisons is to first derive the thirteen Biot

geophysical parameters for the sediment at the experimental site. Some of the parameters

were measured directly, some of the parameters can be obtained by empirical or semi-

empirical methods, and the remaining parameters can be fitted using the measured acoustic

data (compressional wave speed and attenuation) as guides. Biot theory is then used to

calculate wave speeds and attenuation as a function of frequency over the band of interest

(the experimental data were obtained at frequencies of 5 kHz - 80 kHz). These results will

be compared with the geoacoustic model that was developed based on the core data and

measurements of compressional and shear wave velocity and compressional wave

attenuation across several cores. Finally, the anomalous transmitted SPL data near the

critical angle will be examined.
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5.1 The Sediment Model

In this section the 13 Biot input parameters are obtained for the sandy sediment at

the experimental site.

The sediment geoacoustic properties that were measured included the compressional

wave velocity and attenuation at 400 kHz and 120 kHz, and shear wave velocity at around

1 kHz. The measured sediment geophysical properties irluded porosity, permeability,

and grain density (K. Briggs, personal communication). The grain bulk modulus was

taken from the handbook value! for quartz [Clark (1966)]. The properties of the interstitial

pore fluid were de,:mined by empirical equations based on the temperature and salinity at

the laboratory conditions. The frame shear modulus was determined from the product of

the square of the shear velocity and the density which is nearly an exact relation since the

viscosity of seawater is small (see Eq(2.52)). These properties (porosity, permeability,

grain and fluid properties, and shear modulus) are the most important parameters in the

Biot theory for the prediction of wave speeds and attenuations; the remaining parameters

were varied within reasonable bounds in an attempt to match the average measured wave

compressional velocity. The variability in predicted compressional velocity with variability

in these parameters was quite small, with predictions varying roughly 1825-1850 m/s at

400 kHz, confirming that the unknown parameters in this case are less significant than the

parameters that were measured. However, no combination of the remaining parameters

would produce predictions as low as the stated 1743 m/s (see Table 5.1). Thus, the

remaining parameters were set to values that seemed most appropriate. The frame bulk

modulus was obtained by the assumption of a frame Poisson's ratio of .2 [Hunter (1961)].

The pore size parameter was obtained by the relation [Hovem et al. (1981)]:

a = 2 (5 X/P13)2 t (5.1)
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The logarithmic decrements for both the frame shear and bulk moduli were chosen to be

.05 which is roughly in the middle of the range suggested by Stoll (1980). Finally, the

structure factor was chosen to be 1.25 based on Stoll (1974). The input parameters for

Bict iheory ac -ven i. Table 5.2 and the predicted velocities and attenuations are shown

(along with the measured data) in Figures 5.2-5.7. The predicted Type I wave velocity is

somewhat higher than that measured, the predicted Type I attenuation is substantially lower

than that measured, and the predicted shear velocity is the mean of the measured data since

the frame shear modulus was chosen from the mean of the shear velocity data.

It is believed that some, if not all, of the noted differences between Biot theory and

the measured data are attributable to scattering in the core measurements. Theoretical and

experimental evidence [Plona and Winkler (1985)] of multiple scattering in such media

indicates that compressional velocity decreases monotonically with increasing scatter, and

that attenuation increases with increasing scatter. A closer look at the measured geoacoustic

properties, in fact, indicated that both of these trends exist in the data. As evidence of

scattering in the measurements, consider Figure 5.8 which shows measured compressional

velocity at 120 kHz and 400 kHz, and mean grain size as a function of depth in the core at

the measurement site. First, in examining just the frequency dependence of the two

velocity measurements, the negative velocity dispersion is clearly evident; that is, the 400

kHz velocity measurement is consistently lower than the 120 kHz data. Second, scattering

is evident from the middle of the core. Between 20 and 40 cm there was a layer of shell

hash which is evidenced by the increase in mean grain size. Note that the measured

velocity at 400 kHz decreases sharply with increase in grain size.3  For granular

sediments, however, compressional velocity is theoretically (and empirically)

3 Mean grain size can not be considered to be perfectly correlated with scattering since the scatter may be
caused by a relatively small number of large grains that may not be well indicated in a mean grain size
average.
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Table 5.1 ARL-UT geoacoustic model

Pert~Ly Ui au
F.-!;:d dens ity g/crn3  1.02

Fluid speed rn/s 1536

Sediment density g/cm3  2.06

Sediment compressional rn/s 1743
speed

Sediment compressional dB/m/kHz 0.5
attenuation

Sediment shear speed in/s 100

Sediment shear dB/rnlkHz 13.2
attenuation

Table 5.2 Geophysical inputs to Biot theory

ProgjertjLni Vlu

Fluid density, (p0) g/cm 3  1.024

Fluid bulk modulus, (IKf) dyne/cm 2  2.396 1010

Fluid viscosity, (1j) poise .0101

Grain density, (ps) g/cm3  2.66

Grain bulk modulus, (Ks) dyne/cm 2  3.6 1011

Porosity, (Ii) .3673

Permeability, (K) cm2  3.3 10-7

Structure factor, (c) 1.25

Pore size, (a) cm 4.2 10-3

Frame bulk modulus, (Kcm) dyne/cm2  2.27 108+ i 3.6 106

Frame shear bulk modulus dyne/cm2  1.7 108 + i 2.7 106
Wji
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Figure 5.2 Type I Wave Velocity Predicted by Biot Theory from Table 5.2
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Figure 5.4 Type UI Wave Velocity Predicted by Biot Theory from Table 5.2
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Figure 5.5 Type 11 Wave Attenuation Predicted by Biot Theory from Table

5.2



119

Biot

measured

0

0

0 10 20 30 40 50 60 70 s0

Frequency (kHz)

Figure 5.6 Shear Wave Velocity Predicted by Blot Theory from Table 5.2
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Figure 5.7 Shear Wave Attenuation Predicted by Biot Theory from Table
5.2
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directly proportional to grain size. This negative velocity dispersion in the data strongly

suggests scattering. Based on the &ta in Figure 5.8, it is clear that the average value of

compressional wave velocity of 1743 m/s in the ARL-UT model (Table 5.1) was

contaminated by scatter. Furthermore, it is postulated that since shell fragments were noted

throughout the sediment column, all the velocities in Figure 5.7 are contaminated by scatter

and the true velocity is somewhat higher, perhaps close to that predicted by Biot theory.

In Figure 5.9 the attenuation (in dB/m/kHz) is plotted against depth in the core along

with the mean grain size. Consider first just the frequency dependence of the attenuation.

The consistent increase in attenuation with frequency is again strongly indicative that the

core measrements are contaminated by scatter (at least at 400 kHz). It is not clear without

a lower frequency measurement whether the 120 04z data is contaminated. Second, the

large (and unrealistic) measured attenuations toward the middle of the core are almost

certainly highly contaminated by scattering losses.

At this site, group velocities in ,he granular sediments were measured at about 1100

m/s. It was suggested by Chotiros (1989) that this may be a propagatory wave type not

predicted by classical theory. The Biot theory in fact does predict another wave type (in

addition to the classical compressional and shear velocity) that is a compressional wave and

does travel at lower speeds than the classical compressional wave speed (at least in fluid-

saturated marine sediments). It was of interest therefore to calculate its velocity to examine

the possibility of whether or not the measured wave might be the Type II Biot wave. At 80

kHz the velocity of the Type II was predicted to be roughly 100 m/s and no reasonable

combination of geophysical parameters could force predicted velocity as high as that

observed.
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Figure S.8 Measured velocity at 120 kHz and 400 kHz from core data
taken at the buried array site with mean grain size
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Figure 5.9 Measured attenuation at 120 kHz and 400 kHz from core data
taken at the buried array site with mean grain size
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5.2 Sound Pressure Level Comparisons

I e experimental transmitted sound pressur. huvels (SPL) were compared

[Chotiros(1989)] against a full wave model (SAFARI) that considers the sediment to be a

solid. The geoacoustic inputs to the model were developed from the core data and are

given in Table 5.1. The difference between the measured acoustic transmissivity and the

SAFARI model predictions are plotted as excess SPL in Figure 5.10 for two tower

positions (TP): TP 3 (corresponding roughly to a 39 degree grazing angle) and TP 5

(corresponding roughly to a 22 degree grazing angle). Positive differences in Figure 5.10

indicate that the model predictions are too low. Note that at TP 3, where the grazing angle

is far from critical, the model predictions are in reasonable agreement with the data except at

the highest frequency. At TP 5, however, the measured transmissivity is much greater than

that predicted over most of the band. The standard deviations are over all the hydrophones

in the array.

It is the purpose of this section to determine whether the Biot theory could provide

a better explanation of the observed transmissivity. The approach taken was to difference

the results of Eq(4.20) using the geoacoustic model predicted by Biot theory from Table

5.2 (this result represents the Biot theory prediction) with the results of the first term of

Eq(4.20) using the ARL-UT geoacoustic model (Table 5.1) to calculate the moduli, the

wavenumbers and the transmission coefficient (which represents the full-wave solution

where the sediment is considered as a solid). The resulting excess SPL then can be

compared with Figure 5.10.

In the results that follow, the properties of the water are chosen to be representative

of in situ conditions (density= 1.02 g/cm 3 and bulk modulus= 2.4065 1010 dyne/cm 2 ).

These are appropriate for comparisons with the acoustic data; they differ somewhat from

the fluid properties at the laboratory conditions in Table 5.2, and are consistent with the

fluid properties in the ARL-UT geoacoustic model (Table 5.1).



TP5

TP3

TP3

VP

-- IL
0

0 to 20 30 40 s0 80 70 so

Frequency (kilz)

Figure 5.10 Measured minus predicted acoustic pressure levels in the
sediment: mean values +- one standard deviation at tower
positions 3 and 5 for all the hydrophones in the array
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Comparisons were made between Eq (4.20) with the ARL-UT geoacoustic model

and Eq (4.20) using Biot theory. For the comparisons, a receiver depth of .4 m was used.

The ARL-UT model-to-Biot theory comparison results are shown in Figure 5.11 which

compare favorably with the ARL-UT model-to-data comparison in Figure 5.10. The

excess SPL in Figure 5.11 can be ascribed to one or a combination of the following effects

on transmission to a buried receiver.

excitation of Type II waves,

surface wave contributions,

head wave contributions,

transmission across the water-sediment interface, or

attenuation along the path in the sediment.

In order to isolate which effect(s) caused the differences observed in Figure 5.10,

each contribution was examined separately. The second term of Eq(4.20) was calculated

to determine the contribution of Type fl waves to buried receiver and was found to be

negligible at all frequencies at both tower positions. Next, the surface and head wave

contributions were calculated from Eq(4.37 and 4.34-4.36) respectively; the pressure field

from these contributions was likewise negligible.

The plane wave transmission coefficient was calculated for Biot theory and the

ARL-UT model. The magnitude of the plane wave transmission coefficients are shown in

Figure 5.12 where at a given angle the Biot model predicts a somewhat lower

transmissivity due to conversion of energy to the Type II wave. The conversion is stronger

(hence lower transmissivity) with increasing frequency. Comparing the transmissivity

between the Biot and the ARL-UT model it is clear that the differences in transmissivity

between the two models accounts for only a few dB at all frequencies and at both sites.

Thus, the transmission differences between the Biot and ARL-UT model are not enough to

account for the excess SPL.
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The final possibility for the excess SPL in Figure 5.11 is differences in the product

of sediment path length4 and attenuation. Indeed, the non-linear attenuation predicted by

Biot theory is quite different from the ARL-UT model (see Figure 5.13). At TP 3 the path

lengths in the sediment are short and the effect of the attenuation is fairly small. Note,

though, that the effect of attenuation increases with increasing frequency (since attenuation,

in dB/m, increases with increasing frequency). At TP 5, the path length in the sediment is

longer and the effect of the different attenuations is more pronounced (50 dB excess SPL at

80 kHz). At low frequencies, the excess SPL in Figure 5.11 shows a minimum at 8 kHz

similar to that in the excess data SPL (Figure 5.10). The cause of the minimum in Figure

5.11 is the crossing of the Biot non-linear attenuation with the linear attenuation of the

ARL-UT model between 8 kHz and 15 kHz as shown in Figure 5.13. That is, at 5 kHz

and 8 kHz, the Biot attenuation is greater than the ARL-UT attenuation such that the slope

of the SPL excess is negative; at 15 kHz and above the Biot attenuation is less than the

ARL-UT model so that the slope of the SPL excess becomes positive.

5.3 Summary and Conclusions

Data were examined that exhibited anomalously high transmitted SPL (with respect

to the single-phase model, SAFARI) in order to determine whether the anomalies were due

to the Type II wave. Calculations indicated that the Type II contributions were negligible

and were not the cause of the anomalies. This conclusion rests heavily on the constructed

geophysical inputs to Biot theory for the sediment in question (Table 5.2) and the small (-

100 m/s) Type I wave velocity predicted therefrom. The conclusion is robust, though, in

that many of the geophysical inputs were measured and that varying the geophysical inputs

4 The effects due to diffemces in the sediment path lengths predicted by Biot theory and the ARL-UT
model are small compared with the effects of intrinsic attenuation.
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(within physically plausible limits) does not make the Type H wave contributions non-

negligible.5

Much of the anomalous behavior appeared to be simply the result of an incorrect

compressional wave attenuation. The excess SPL at TP 3 appears to be entirely explainable

in terms of the compressional wave attenuation (compare Figures 5.10 and 5.11). The

excess SPL at TP 5 appears to be due to compressional wave attenuation at low (5 kHz and

8 kHz) and high (60 kHz and 80 kHz) frequencies. The two mid-frequencies (15 kHz and

30 kHz) at TP 5 are not well-explained by the present modeling but may be due to effects

not accounted for in the modeling such as the presence of the shell layer (an impedance

boundary) at 15 cm (see Figure 5.8). Suffice it to say, however, that the anomalies are not

due to the Type II wave.

Thus, in large measure, the failure of SAFARI in predicting the observed levels lay

not in the neglect of the Type II waves but simply in the incorrect geoacoustic model which

was based on the apparently contaminated core data. The Biot theory provided the means

to check the core data based upon the geophysical inputs that are, in general, more reliably

measured.

5 The one possible exception is if gases were present in the interstitial fluid. Even small amounts of gas
are known to have significant effects on compressional wave velocity. If gas were present, the measured
velocity of 1100 m/s may be velocity of the Type I wave, and the excess SPL in Figure 5.10 could be
explained by simple path length considerations.
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Chapter 6

SUMMARY AND CONCLUSIONS

The Biot theory of propagation in a porous medium provides a mathematical

framework for studying acoustic interaction with the seafloor. The theory considers the

two-phase porous nature of marine sediments in contrast to the classical models of wave

propagation in the seafloor that consider marine sediments as an extended single-phase

fluid or solid. A boundary value problem was set up and solved for a line source in a fluid

medium above a poro-viscoelastic halfspace. Expressions for the reflected and transmitted

field were given in integral form and asymptotic expansions in the high-frequency, far-field

limit. A set of simultaneous equations was solved to give plane wave reflection and

transmission (Type I, Type II and shear wave) coefficients. These equations also yielded

the Scholte, pseudo-Scholte, and pseudo-Rayleigh wave phase velocities and at.-nuations.

The expressions obtained for the transmitted field in the pore fluid were compared

with measured data from an array of hydrophones buried in sand and insonified at high

frequency. This data set had shown much higher transmissivities near the critical angle

than that predicted by a single-phase, solid model (SAFARI). The Biot theory was used

both to develop a geoacoustic model (Type I, Type H, and shear wave velocities and

attenuations, and density) and to model the acoustic transmissivity of the sand. The Biot

theory showed qualitative agreement with the measured data. Surprisingly, this was not

due to a poro-viscoelastic effect (i.e., contributions from the Type 1 wave) as speculated.

In fact the contributions from both the Type II wave and the shear wave were negligible.

The agreement was due simply to the realism of the geoacoustic model (in particular the

Type I wave attenuation) at the experimental frequencies. The SAFARI results were based

on measured core data believed to be contaminated by scatter.

The principal objective of this work was to understand how the porous nature of

marine sediments influences reflection from and transmission through the seafloor. This



133

was accomplished by comparing plane wave coefficients between poro-viscoelastic (using

Biot theory), viscoelastic, and fluid models of the sediment. The differences between the

geoacoustic models from Biot theory and from the single phase models include: the

frequency dependence of the phase velocities, and the existence of the compressional wave

of the second kind. The effect of each difference on the plane wave coefficients is

summarized in the following paragraphs.

The frequency dependence of the velocities and attenuations in Biot theory were

sufficient to cause differences in the plane wave coefficients with respect to those predicted

by the classical single phase models. For the sand case the critical frequency was low

enough to be in the frequency range of interest. Therefore, the velocity and attenuation of

each wave type (especially the Type I wave which is the most important wave influencing

reflectivity for this sediment type) varied non-linearly over the band of interest leading to

the frequency dependent plane wave coefficients. For the silty clay case, the critical

frequency was high enough that the velocity of the Type I wave (the only wave

participating strongly in the reflection and transmission process) was nearly constant with

frequency and the attenuation was slightly non-linear with frequency. The reflection

coefficient was independent of frequency over the 10 Hz - 10 kHz band. For the sandstone

case, the velocity of the Type I and shear waves were only weakly dispersive. From

previous results this suggests that the plane wave coefficients should exhibit only a weak

frequency dependence. In this case, however, the velocity dispersion of the Type II

significantly influenced the plane wave coefficients at high frequency.

For the unconsolidated sediments considered here (silty clay, carbonate sand, and

shelly sand of Chapter 5) the excitation of the Type II wave was negligible at all

frequencies. In a layered sedimentary sequence (e.g. turbidites in abyssal plains) with

multiple interfaces; however, the excitation of the Type I wave may provide a rn-

negligible loss mechanism not contemplated in the classical single-phase models.

Moreover, the existence of such layers introduces the possibility of excited resonances of
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the Type II wave in the layer. In any case, if the Type II wave did prove to be important

for a layered medium, it would only be important at high frequencies (with respect to the

critical frequency) where the Type 1I wave is propagatory. The losses due to the Type II

wave were clearly evident at a single interface for the consolidated sediment (sandstone) at

high frequencies.

Finally, the model-to-model and model-to-data comparisons provided some

unexpected insight into the propriety of the common use of core data (velocity and

attenuation) in developing geoacoustic models. First, core data measured at 400 kHz

cannot in the general case be extrapolated in frequency by assuming a linear frequency

dependence on attenuation. Second, the core data for sandy sediments may be

contaminated by scatter (as was the case in the measurements discussed in Chapter V). The

Biot theory can be used in both instances: to either extrapolate in frequency or as an aid in

determining the reliability of the core data. Examples of the effect of extrapolation from

(synthetic) core data at 400 kHz were given for plane wave reflectivity and surface wave

velocity and attenuation.
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APPENDIX A

Definition of the Complex Elastic Moduli

The complex elastic moduli were shown by Stoll (1974) to depend upon the bulk

moduli of the fluid, solid, and frame constituents in the following way:

C = Ks (Ks - Kn)/(D - Km)

H = (Ks - K) 2 /(D - Km) + Km+ 43

M = Ks2 /(D - Km)

D=Ks(1+13(Ks/Kf-1) )

where Ks is the bulk modulus of the individual grains, Kf is the bulk modulus of the

interstitial fluid, and Km is the complex bulk modulus of the sediment frame. In the

general case, the grain bulk modulus can be complex to account for losses within the

individual grains; however, in this work only the frame bulk modulus and the frame shear

modulus, g., are complex. Losses arising from a non-ideal interstitial fluid are taken into

account via the viscosity rather than a complex modulus.
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APPENDIX B

Numerical Methods

In general, the computations required a high degree of precision. This is primarily

due to the disparate values of the material parameters that comprise a marine sediment; the

difference between the smallest and largest parameter typically spans 15-20 orders of

magnitude (e.g., see Table 2.1). This resulted in numerical instabilities, for example, in

the solution of Eq (2.70) using Cramer's rule. Partial pivotal scaling and use of double

precision was sufficient render the matrix calculations stable.

The most difficult numerical problem encountered was the solution of the secular

equation which required finding roots of a transcendental equation in the complex plane.

Few numerical methods for solution of such a problem in fact exist. Muller's (1956)

method was attempted but was non-convergent even at double precision arithmetic. Thus

the behavior of the solution surface was too erratic (under-resolved) for the granularity of

the number system of the dependent variable. Mathematica TM (Wolfram (1988)) software,

which allows arbitrary precision, was then employed using the secant method extended to

the complex plane. This technique was successful and reasonably efficient (less than fifty

iterations were usually sufficient for convergence) in finding the roots to the secular

equation.

The numerical implementation of the theory was coded in Microsoft Fortran and

executed on an 80386 personal computer with an 80387 math co-processor. IMSL

routines were employed to evaluate the Kelvin function and its first derivative, the plane

wave coefficients, and the FFT.
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APPENDIX C

Derivation of the location of the virtual source

Candel and Crance (1981) derive the location of the virtual source for a lossless

two-fluid boundary. The equations for a porous medium can be rewritten as:

xi , =h[( J-1] .30),

•01

zi=h 1-VQ - sin2  60 1]2 34 oe

(C-i)

where the subscript i = p, 2 refer to the Type I and Type II wave, respectively. That is, for

a given source/receiver geometry, the angle of incidence (0oi) corresponding to the steepest

descent geometrical ray path will be different for each wave type. Note that the quantity

I 1 V 2 020i1/2

should be taken such that the imaginary part is negative (which follows from the radiation

conditions discussed in Chapter 2). Now Eq. (C-1) together with Eq. (4.22) requires that

00i be complex. The transcendental equation for 0i can be written as :
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z sinO0 i -(htano 0 - x)Vo[1- V2sine 20 1 AC2

In order to preserve the meaning of the geometrical ray path, the following changes are

made to the virtual source position as derived by Candel and Crance (1981). The angle of

the ray connecting the receiver and the boundary will be redefined as the angle of the planes

of constant phase, which is a real angle and given by Eq. (4.27). Eq. (4.27) can be

rewritten to depend on source/receiver geometry and angle of incidence as follows:

z sin0i = (h tano00 - x)Vo Re{[1 -4 si2 0),| /

V0 
.i (C-3)

Note that the angle of incidence is also now real. For the results in Chapters 4 and 5, Eq.

(C-3) is first solved numerically for 00i, the x coordinate of the virtual source position is

then given by Eq. (C-i) and finally the z coordinate of the virtual source is obtained from

Eq. (4.22) as

Z=Z+XX I- V+ (x)[ sin2 0 i 11/2 1 )k ,~; s0o
V -Vosin (C-4)


